Dec. 2011
 BOOKLET-[C]
 PART -B

21. Identify which of the following operators is not hermitian ?
(a) $\frac{\hbar}{\mathrm{i}} \frac{\mathrm{d}}{\mathrm{dx}}$
(b) $i \frac{d^{2}}{d x^{2}}$
(c) $\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}}$
(d) x^{2}
22. The term symbol for the ground state of nitrogen atoms is
(a) ${ }^{3} \mathrm{P}_{0}$
(b) ${ }^{4} \mathrm{P}_{3 / 2}$
(c) ${ }^{1} \mathrm{P}_{1}$
(d) ${ }^{4} S_{3 / 2}$
23. $\quad P_{A}$ and P_{B} denote the populations of two energy states E_{A} and E_{B}, and $E_{A}>E_{B}$ The correct statment when the temperature $T_{1}>T_{2}$ is
(a) $\mathrm{P}_{\mathrm{A}}\left(\mathrm{T}_{1}\right)>\mathrm{P}_{\mathrm{B}}\left(\mathrm{T}_{1}\right), \mathrm{P}_{\mathrm{A}}\left(\mathrm{T}_{2}\right)<\mathrm{P}_{\mathrm{B}}\left(\mathrm{T}_{2}\right)$ and $\left(\mathrm{P}_{\mathrm{A}} / \mathrm{P}_{\mathrm{B}}\right)_{\mathrm{T}_{1}}>\left(\mathrm{P}_{\mathrm{A}} / \mathrm{P}_{\mathrm{B}}\right)_{\mathrm{T}_{2}}$
(b) $\mathrm{P}_{\mathrm{A}}\left(\mathrm{T}_{1}\right)<\mathrm{P}_{\mathrm{B}}\left(\mathrm{T}_{1}\right), \mathrm{P}_{\mathrm{A}}\left(\mathrm{T}_{2}\right)>\mathrm{P}_{\mathrm{B}}\left(\mathrm{T}_{2}\right)$ and $\left(\mathrm{P}_{\mathrm{A}} / \mathrm{P}_{\mathrm{B}}\right)_{\mathrm{T}_{1}}<\left(\mathrm{P}_{\mathrm{A}} / \mathrm{P}_{\mathrm{B}}\right)_{\mathrm{T}_{2}}$
(c) $\mathrm{P}_{\mathrm{A}}\left(\mathrm{T}_{1}\right)<\mathrm{P}_{\mathrm{B}}\left(\mathrm{T}_{1}\right), \mathrm{P}_{\mathrm{A}}\left(\mathrm{T}_{2}\right)<\mathrm{P}_{\mathrm{B}}\left(\mathrm{T}_{2}\right)$ and $\left(\mathrm{P}_{\mathrm{A}} / \mathrm{P}_{\mathrm{B}}\right)_{\mathrm{T}}>\left(\mathrm{P}_{\mathrm{A}}>\mathrm{P}_{\mathrm{B}}\right)_{\mathrm{T}_{2}}$
(d) $\mathrm{P}_{\mathrm{A}}\left(\mathrm{T}_{1}\right)<\mathrm{P}_{\mathrm{B}}\left(\mathrm{T}_{1}\right), \mathrm{P}_{\mathrm{A}}\left(\mathrm{T}_{2}\right)<\mathrm{P}_{\mathrm{B}}\left(\mathrm{T}_{2}\right)$ and $\left(\mathrm{P}_{\mathrm{A}} / \mathrm{P}_{\mathrm{B}}\right)_{\mathrm{T}_{1}}<\left(\mathrm{P}_{\mathrm{A}} / \mathrm{P}_{\mathrm{B}}\right)_{\mathrm{T}_{2}}$
24. The uncertainty in the NMR frequency of a compound in liquid state (relaxation time $=1 \mathrm{~s}$) is 0.1 Hz . The uncertainty in the frequency (in HZ) O) same compound in solid state (relaxation time $=10^{-4} \mathrm{~s}$) is
(a) 10^{-4}
(b) 100
(c) 1000
(d) 10^{-3}
25. Which one of the following conductometric titrations will show a linear increase of the conductance with volume of the titrant added up to the break point and an almost constant conductance afterwards.
(a) A strong acid with a strong base
(b) A strong acid with a weak base
(c) A weak acid with a strong base
(d) A weak acid a weak base.
26. Flocculation value of $\mathrm{K}_{2} \mathrm{SO}_{4}$ is much less than that of KBr for Sol A . Floccultion value of CaCl_{2} is much less than that of NaCl for Sol B . Which of the following statements is correct?
(a) Sol A is negatively charged and Sol B is positively charged
(b) Both the sols are negatively charged.
(c) Sol A is positively charged and sol B is negatively charged
(d) Both the sols are positively charged.
27. For a system of constant composition, the pressure (P) is given by.
(a) $-\left(\frac{\partial U}{\partial S}\right)_{V}$
(b) $-\left(\frac{\partial U}{\partial V}\right)_{S}$
(c) $\left(\frac{\partial \mathrm{V}}{\partial \mathrm{S}}\right)_{\mathrm{T}}$
(d) $\left(\frac{\partial U}{\partial V}\right)_{T}$
28. The value of d_{111} in a cubic crystal is 325.6 pm . The value of d_{333} is
(a) 325.6 pm
(b) 976.8 pm
(c) 108.5 pm
(d) 625.6 pm
29. The symmetry point group of ethane in its staggered conformation is
(a) $\mathrm{C}_{3 \mathrm{v}}$
(b) $\mathrm{D}_{3 \mathrm{~d}}$
(c) $\mathrm{D}_{3 \mathrm{~h}}$
(d) S_{6}
30. For the reaction $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell)$, the value of $\Delta \mathrm{H}-\Delta \mathrm{U}$ (in kJ$)$ at 300 K and 1 bar is
(a) -5.0
(b) 0.0
(c) 2.5
(d) 5.0
31. The sodium D lines are due to ${ }^{2} \mathrm{P}_{1 / 2} \rightarrow{ }^{2} \mathrm{~S}_{1 / 2}\left(\Delta \mathrm{E}_{1}\right)$ and ${ }^{2} \mathrm{P}_{3 / 2} \rightarrow{ }^{2} \mathrm{~S}_{1 / 2}\left(\Delta \mathrm{E}_{2}\right)$ transitions. The splitting due to spin-orbit coupling in ${ }^{2} \mathrm{P}$ state of the sodium atom is
(a) $\Delta \mathrm{E}_{2}+\Delta \mathrm{E}_{1}$
(b) $\Delta \mathrm{E}_{2}-\Delta \mathrm{E}_{1}$
(c) $\frac{\Delta \mathrm{E}_{2}+\Delta \mathrm{E}_{1}}{2}$
(d) $\frac{\Delta \mathrm{E}_{2}-\Delta \mathrm{E}_{1}}{2}$
32. The rate constant of a unimolecular reaction was $2.66 \times 10^{-3} \mathrm{~s}^{-1}$ and $2.2 \times 10^{-1} \mathrm{~s}^{-1}$ at $\mathrm{T}=120 \mathrm{~K}$ and 360 K respectively. The rate constant (in s^{-1} units) at 240 K would be
(a) 2.4×10^{-2}
(b) 2.4×10^{-1}
(c) 4.8×10^{-2}
(d) $1: 8 \times 10^{-3}$
33. For a potentiometric titration, in the curve of emf (E) vs volume (V) of the titrant added, the equivalence point is indicated by
(a) $|\mathrm{dE} / \mathrm{dV}|=0,\left|\mathrm{~d}^{2} E / \mathrm{dV}^{2}\right|=0$
(b) $|\mathrm{dE} / \mathrm{dV}|=0,\left|\mathrm{~d}^{2} \mathrm{E} / \mathrm{dV}^{2}\right|>0$
(c) $|\mathrm{dE} / \mathrm{dV}|>0,\left|\mathrm{~d}^{2} \mathrm{E} / \mathrm{dV}^{2}\right|=0$
(d) $|\mathrm{dE} / \mathrm{dv}|>0,\left|\mathrm{~d}^{2} \mathrm{E} / \mathrm{dV}^{2}\right|>0$
34. The osmotic pressure (π) of a polymer sample at different concentrations (c) was measured at $\mathrm{T}(\mathrm{K})$. A plot of (π / c) versus c gave a straight line with slope (m) and intercept (c^{\prime}). The number average molecular weight of the ploymer is ($\mathrm{R}=$ gas constant).
(a) $\frac{\mathrm{Rt}}{\mathrm{c}^{\prime}}$
(b) $\frac{\mathrm{c}^{\prime}}{\mathrm{RT}} \quad \mathrm{C}$
(c) RT
(d) $m \mathrm{RT}$
35. The concentration of a reactant undergoing decomposition was $0.1,0.08$ and $0.067 \mathrm{~mol} \mathrm{~L}^{-1}$ after $1.0,2.0$ and 3.0 hr respectively. The order of the reaction is
(a) 0
(b) 1
(c) 2
(d) 3
36. A particle is constrained in a one dimensional box of length 2 a with potential $\mathrm{V}(\mathrm{x})=\propto ; \mathrm{x}<-\mathrm{a}, \mathrm{x}>\mathrm{a}$ and $\mathrm{V}(\mathrm{x})=0 ;-\mathrm{a} \leq \mathrm{x} \leq \mathrm{a}$. Energy difference between levels $\mathrm{n}=3$ and $\mathrm{n}=2$ is
(a) $\frac{5 h^{2}}{8 \mathrm{ma}^{2}}$
(b) $\frac{9 h^{2}}{8 \mathrm{ma}^{2}}$
(c) $\frac{9 h^{2}}{32 \mathrm{ma}^{2}}$
(d) $\frac{5 h^{2}}{32 \mathrm{ma}^{2}}$
37. In the ${ }^{19} \mathrm{~F}$ NMR spectrum of PF_{5}, the number of signals and multiplicity, at room temperature are
(a) one, singlet
(b) one, doublet
(c) two, doublet
(d) two singlet
38. The correct statement regarding closo- $\left\{B_{n} H_{n}\right\}$ species is :
(a) it always has -2 charge
(b) it always has +2 charge
(c) it is a neutral species
(d) it is more reactive than nido arachno-, and hypo-boranes
39. Lewis acidity of $\mathrm{BCl}_{3}, \mathrm{BPh}_{3}$ and BMe_{3} with respect to pyridine follows the order
(a) $\mathrm{BCl}_{3}>\mathrm{BPh}_{3}>\mathrm{BMe}_{3}$
(b) $\mathrm{BMe}_{3}>\mathrm{BPh}_{3}>\mathrm{BCl}_{3}$
(c) $\mathrm{BPh}_{3}>\mathrm{BMe}_{3}>\mathrm{BCl}_{3}$
(d) $\mathrm{BCl}_{3}>\mathrm{BMe}_{3}>\mathrm{BPh}_{3}$
40. Superoxide dismutase contains the metal ions
(a) Zn (II) and Ni (II)
(b) Cu (II) and Zn (II)
(c) Ni (II) and Co (III)
(d) Cu (II) and Fe (III)
41. The number of antibonding electrons in NO and CO according to MO theory are respectively.
(a) 1,0
(b) 2,2
(c) 3,2
(d) 2, 3
42. The correct combination of metal, number of carbonyl ligands and the charge for a metal carbonyl complex $\left[\mathrm{M}(\mathrm{CO})_{x}\right]^{2-}$ that satisfies the 18 electron rule is
(a) $\mathrm{M}=\mathrm{Ti}, \mathrm{x}=6, \mathrm{z}=1$
(b) $\mathrm{M}=\mathrm{V}, \mathrm{x}=6, \mathrm{z}=1$
(c) $\mathrm{M}=\mathrm{Co}, \mathrm{x}=4, \mathrm{z}=2$
(d) $\mathrm{M}=\mathrm{Mo}, \mathrm{x}=5, \mathrm{z}=1$
43. Among the following pairs
(1) oxygen-sulfur
(2) nitrogen -phosphorus
(3) phosphorus arsenic
(4) chlorine- iodine

Those in which the first ionization energies differ by more than $300 \mathrm{~kJ}^{2} \mathrm{~mole}^{-1}$ are :
(a) (1) and (3) only
(b) (1) and (2) only
(c) (2) and (3) only
(d) (3) and (4) only
44. The stable cyclopentadienyl complex of beryllium is
(a) $\left[\operatorname{Be}\left(\eta^{2}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$
(b) $\left[\mathrm{Be}\left(\eta^{2}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$
(c) $\left[\operatorname{Be}\left(\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$
(d) $\left[\mathrm{Be}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$
45. The reaction between $\mathrm{NH}_{4} \mathrm{Br}$ and Na metal (in) liquid ammonia (solvent) results in the products
(a) $\mathrm{NaBr}, \mathrm{HBr}$
(b) $\mathrm{NaBr}, \mathrm{H}_{2}$
(c) $\mathrm{H}_{2}, \mathrm{HBr}$
(d) $\mathrm{HBr}, \mathrm{H}_{2}$
46. The material that exhibits the highest electrical conductivity among the following sulfur- nitrogen compounds is
(a) $\mathrm{S}_{4} \mathrm{~N}_{4}$
(b) $\mathrm{S}_{2} \mathrm{NH}^{2}$
(c) $\mathrm{S}_{2} \mathrm{~N}_{2}$
(d) $(\mathrm{SN})_{\mathrm{x}}$
47. Uranium fluorides co-preclpitate with
(a) CaF_{2}
(b) AgF
(c) LiF
(d) MgF_{2}
48. The acid-base indicator (HIn) shows a colour change at pH 6.40 when 20% of it is ionized. The dissociation constant of the indicator is
(a) 9.95×10^{-8}
(b) 3.95×10^{-6}
(c) 4.5×10^{-8}
(d) 6.0×10^{-8}
49. The actual magnetic moment shows a large deviation from the spin-only formula in the case of
(a) Ti^{3+}
(b) V^{3+}
(c) Gd^{3+}
(d) Sm^{3+}
50. The complex that absorbs light of shortest wavelength is
(a) $\left[\mathrm{CoF}_{6}\right]^{3-}$
(b) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(c) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(d) $\left[\mathrm{Co}(\mathrm{OX})_{3}\right]^{3-}\left(\mathrm{OX}=\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right)$
51. Two α particles having speeds S_{1} and S_{2} have kinetic energies 1 and 2 MeV respectively; the relationship between S_{1} and S_{2} is :
(a) $\mathrm{S}_{1}=2 \mathrm{~S}_{2}$
(b) $\mathrm{S}_{2}=2 \mathrm{~S}_{1}$
(c) $\mathrm{S}_{2}=\sqrt{2} \mathrm{~S}_{1}$
(d) $\mathrm{S}_{1}=\sqrt{2 \mathrm{~S}_{2}}$
52. Green coloured $\mathrm{Ni}\left(\mathrm{PPh}_{2} \mathrm{Et}\right)_{2} \mathrm{Br}_{2}$, has a magnetic moment of $3.20 \mathrm{~B} . \mathrm{M}$. The geometry and the number of isomers possible for the complex respectively, are
(a) square planar and one
(b) tatrahedral and one
(c) Square planer and two
(d) tetrahedral and two
53. The chemiluminescence method for determining NO in environmental samples is based on formation of $\mathrm{NO}_{2}{ }^{*}$ (excited) which is generally generated by reacting NO with
(a) O_{2}
(b) O_{2}^{-}
(c) O_{3}
(d) $\mathrm{O}_{2}{ }^{2-}$
54. In the IR spectrum, carbonyl absorption band for the following compound appears at

(a) $1810 \mathrm{~cm}^{-1}$
(b) $1770 \mathrm{~cm}^{-1}$
(c) $1730 \mathrm{~cm}^{-1}$
(d) $1690 \mathrm{~cm}^{-1}$
55. Among the following compounds, the formyl anion equivalent is
(a) acetylene
(b) nitromethane
(c) ethyl chlorgformate
(d) 1, 4-dithiane
56. In the following concerted reaction, the product is formed by a

(a) 6π-disrotatory electrocyclisation
(b) 4π-disrotatory electrocyclisation
(c) 6π-conrotatory electrocyclisation
(d) 4π-conrotatory electrocyclisation.
57. A suitable reagent combinationfoncarrying out the following conversion is

(a) trimethyl orthoacetate and p - toluenesulfonic acid
(b) trimethyl ortho acetate and sodium hydroxide
(c) 2-methoxypropene and p-toluenesulfonic acid
(d) 2- methoxypropene and sodium hydroxide
58. The IUPAC name of the following compound is

(a) (R)-3- (prop-2-enyl) hex-5-ynoic acid
(b) (S)-3- (prop-2-enyl) hex-5-ynoic acid
(c) (R)-3- (prop-2-enyl) hex-5-enoic acid
(d) (S)-3- (prop-2-ynyl) hex-5- enoic acid
59. In the mass spectrum of dodecahedrane $\left(\mathrm{C}_{20} \mathrm{H}_{20}\right)$, approximate ratio of the peaks at $\mathrm{m} / \mathrm{z} 260$ and 261 is:
(a) $1: 1$
(b) $5: 1$
(c) $10: 1$
(d) $20: 1$
60. The reaction given below proceeds through

(a)

(b)

(c)

(d)

61. Among the following drugs, the anticancer agents is:
(a) captopril
(b) chloroquine
(c) camptothecin
62. The reaction that involves the formation of both $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonds is
(a) Diels-Alder reaction
(b) Darzen's glycidic ester condensation
(c) aldol reaction
(d) Beckmann rearrangement
63. Among A-C, the aromatic compounds are

(A)

(B)

(C)
(a) A, B and C
(b) A and B only
(c) B and C only
(d) A and C only
64. In the following Markownikovaddition reaction, the products A and B are
(a) homomers
(b) enantiomers
(c) diastereomers
(d) regioisomers
65. The major product formed in the following reaction is

(a)

(b)

(c)

(d)

66. Among A-C, the compounds which can exhibit optical activity are

(A)

(B)

(C)
(a) A, B and C
(b) A and B only
(c) A and C only
(d) B and C only
67. The major product formed in the following reaction is

(a)

(b)

(c)

68. An organic compound (MF: $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$) exhibited the following ${ }^{1} \mathrm{H}$ NMR spectral data: $\delta 2.5$ (3 $\mathrm{H}, \mathrm{s}), 3.8(3 \mathrm{H}, \mathrm{s}), 6.8(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8=\mathrm{Hz}), 7.2(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}) \mathrm{ppm}$. The compound among the choices, is
(a) 4-ethylphenol
(b) 2-ethylphenol
(c) 4-methylanisole
(d) 4-methylbenzyl alcohol
69. With respect to electrophilic aromatic substitution, reactivity order of pyrrole, pyridine and indole is
(a) indole > pyrrole > pyridine
(b) pyrrole > pyridine > indole
(c) pyrrole > indole > pyridine
(d) indole > pyridine > pyrrole
70. The most appropriate reagent suitable for the conversion of 2-octyne into trans-2-octene is
(a) zinc and acetic acid
(b) $10 \% \mathrm{Pd} / \mathrm{C}$
(c) lithium in liquid ammonia
(d) hydrazine hydrate

PART C

71. Consider a n-type semiconductor whose $\mathrm{E}_{\mathrm{v}}=0, \mathrm{E}_{\mathrm{c}}=2.0 \mathrm{eV}$ and $\mathrm{E}_{\mathrm{d}}=1.98 \mathrm{eV}$. The correct statement among the following is
(a) $\mathrm{E}_{\mathrm{f}}=1 \mathrm{eV}$ and is independent of T
(b) $\mathrm{E}_{\mathrm{f}}=1.99 \mathrm{eV}$ and remains independent of T
(c) $\mathrm{E}_{\mathrm{f}}=1.99 \mathrm{eV}$ and increases towards 2.0 eV with increase of T
(d) $\mathrm{E}_{\mathrm{f}}=1.99 \mathrm{eV}$ and decreases with increase of T .
72. Reaction of $\mathrm{Fe}(\mathrm{CO})_{5}$ with OH^{-}leads to complex A which on oxidation with MnO_{2} gives B . Compounds A and B respectively are
(a) $\left[\mathrm{HFe}(\mathrm{CO})_{4}\right]^{-}$and $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$
(b) $\left[\mathrm{Fe}(\mathrm{CO})_{5}(\mathrm{OH})\right]^{-}$and $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$
(c) $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$ and $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$
(d) $\left[\mathrm{HFe}(\mathrm{CO})_{4}\right]^{-}$and $\mathrm{Fe}_{2} \mathrm{O}_{3}$
73. For the reaction $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{C}($ graphite $) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, the variation of energy parameter $\Delta \mathrm{G}^{\circ}, \Delta \mathrm{H}^{\circ}$ and $\mathrm{T} \Delta \mathrm{S}^{\circ}$ of the reaction over a large temperature range is shown below. The correct identification of the curves is given by

(a) $\mathrm{A} \rightarrow \Delta \mathrm{G}^{\circ}, \mathrm{B} \rightarrow \Delta \mathrm{H}^{\circ}, \mathrm{C} \rightarrow \mathrm{T} \Delta \mathrm{S}^{\circ}$
(b) $\mathrm{A} \rightarrow \Delta \mathrm{H}^{\circ}, \mathrm{B} \rightarrow \Delta \mathrm{G}^{\circ}, \mathrm{C} \rightarrow \mathrm{T} \Delta \mathrm{S}^{\circ}$
(c) $\mathrm{A} \rightarrow \Delta \mathrm{G}^{\circ}, \mathrm{B} \rightarrow \mathrm{T} \Delta \mathrm{S}^{\circ}, \mathrm{C} \rightarrow \Delta \mathrm{H}^{\circ}$
(d) $\mathrm{A} \rightarrow \mathrm{T} \Delta \mathrm{S}^{\circ}, \mathrm{B} \rightarrow \Delta \mathrm{H}^{\circ}, \mathrm{C} \rightarrow \Delta \mathrm{G}^{\circ}$
74. A Sodalite cage in zeolites is
(a) a truncated tetrahedron
(b) an icosahedron
(c) a truncated octahedron
(d) a dodecahedren
75. Two moles of a nonvolatile solute is dissolved in 48 mol of water and the resultant solution has a vapour pressure of 0.0392 bar at 300 K . If the vapour prêssure of pure water at 300 K is 0.0400 bar , the activity coefficient of water in the solution is:
(a) 0.96
(b) 0.98
(c) 1.00
(d) 1.02
76. The final product (s) of the reaction $\mathrm{P}(\mathrm{OR}) \& \mathrm{R}$ is/are
(a) $\mathrm{R}^{\prime} \mathrm{PO}(\mathrm{OR})_{2}$ and RX
(b) $\left[\mathrm{R}^{\prime} \mathrm{PO}(\mathrm{OR})_{2}\right] \mathrm{X}$
(c) $\left[\mathrm{R}^{\prime} \mathrm{RPO}_{2}(\mathrm{OR})\right] \mathrm{X}$
(d) ROR' and $\mathrm{P}(\mathrm{OR})_{2} \mathrm{X}$
77. 1 mol of $\mathrm{CO}_{2}, 1 \mathrm{~mol}$ of N_{2} and 2 mol of O_{2} were mixed at 300 K . The entropy of mixing is
(a) $6 \mathrm{R} \ln 2$
(b) $8 \mathrm{R} \ell \mathrm{n} 2$
(c) $\frac{8 \mathrm{R} \ln 2}{300}$
(d) $16 \mathrm{R} \ln 2$
78. For the eigenstates of the hydrogen atom, which of the following relations between the expectation value of kinetic energy (T) and potential (V) holds true?
(a) $\langle\mathrm{T}\rangle=\langle\mathrm{V}\rangle$
(b) $2\langle\mathrm{~T}\rangle=-\langle\mathrm{V}\rangle$
(c) $2\langle\mathrm{~T}\rangle=\langle\mathrm{V}\rangle$
(d) $\langle\mathrm{T}\rangle=-2\langle\mathrm{~V}\rangle$
79. For the liquid \rightleftharpoons vapour equilibrium of a substance $\frac{\mathrm{dP}}{\mathrm{dT}}$ at 1 bar and 400 K is 8×10^{-3} bar K^{-1}. If the molar volume in the vapour form is $200 \mathrm{~L} \mathrm{~mol}^{-1}$ and the molar volume in the liquid form is negligible, the molar enthalpy of vapourisation is $(1.0 \mathrm{bar} \mathrm{L}=100 \mathrm{~J})$
(a) $640 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) $80 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $64 \mathrm{~kJ} \mathrm{~mol}^{-1}$
80. The correct order of acidity among the following species is
(a) $\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+}>\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}>\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}>\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(b) $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}>\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}>\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+}$
(c) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}>\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}>\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+}$
(d) $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+}>\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}>\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
81. The Langmuir adsorption isotherm is given by $\theta=\frac{K p}{1+K p}$, where P is the pressure of the adsorabate gas. The Langmuir adsorption isotherm for a diatomic gas A_{2} undergoing dissociative adsorption is:
(a) $\theta=\frac{\mathrm{Kp}}{1+\mathrm{Kp}}$
(b) $\theta=\frac{2 \mathrm{Kp}}{1+2 \mathrm{Kp}}$
(c) $\theta=\frac{(K p)^{2}}{1+(\mathrm{Kp})^{2}}$
(d) $\theta=\frac{(\mathrm{Kp})^{1 / 2}}{1+(\mathrm{Kp})^{1 / 2}}$
82. The standrad electrode potentials $\left(\mathrm{E}^{0}\right)$ of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ and $\mathrm{Fe}^{2+} / \mathrm{Fe}$ electrodes are +0.77 V and -0.44 V respectively at 300 K . The E° of $\mathrm{Fe}^{3+} / \mathrm{Fe}$ electrode at the same temperature is
(a) 1.21 V
(b) 0.33 V
(c) -0.11 V
(d) -0.04 V
83. Which of the following is true for the radial part of the hydrogen atom wavefunctions $\mathrm{R}_{\mathrm{n} \ell}(\mathrm{r})$ (n principal quantum number) and the nodes associated with them?
(a) The radial part of only s function is non-zero at the origin and has $(\mathrm{n}-1)$ nodes.
(b) The radial part of s function is zero at the origin and has n number of nodes.
(c) All radial functions have values of zero at the origin and have $(\mathrm{n}-1)$ nodes.
(d) The radial parts of alls functions are zero at the origin and have no nodes.
84. For non-degenerate perturbation theory for ground state, with $\mathrm{E}_{0}^{(0)}$ as zeroth order energy, $\mathrm{E}_{0}^{(1)}$ as the first-order perturbation correction and E_{0} as the exact energy, which of the following is true?
(a) $\left(\mathrm{E}_{0}^{(0)}+\mathrm{E}_{0}^{(1)}\right)$ is always equal to E_{0}
(b) $\left(\mathrm{E}_{0}^{(0)}+\mathrm{E}_{0}^{(1)}\right) \leq \mathrm{E}_{0}$
(c) $\left(\mathrm{E}_{0}^{(0)}+\mathrm{E}_{0}^{(1)}\right) \geq \mathrm{E}_{0}$
(d) $\mathrm{E}_{0}^{(0)} \leq\left(\mathrm{E}_{0}+\mathrm{E}_{0}^{(1)}\right)$
85. Observe the following electronic transition of a diatomic molecule.
(a) ${ }^{1} \sum_{g}^{+} \rightarrow \sum_{g}^{+}$
(b) ${ }^{1} \sum_{\mathrm{u}}^{+} \rightarrow{ }^{1} \sum_{\mathrm{g}}^{+}$
(c) ${ }^{1} \Delta_{u} \rightarrow{ }^{1} \sum_{g}^{+}$
(d) ${ }^{1} \Pi_{g} \rightarrow{ }^{1} \sum_{u}^{+}$

The allowed transitions are
(a) (A) and (C) only
(b) (B) and (D) only
(c) (A), (B) and (C) only
(d) (A), (C) and (D) only
86. An excited triplet state wave function of hydrogen molecule with the electronic configuration $\sigma_{\mathrm{g}}^{1} \sigma_{\mathrm{u}}^{1}$ has the following space part
(a) $\sigma_{g}(1) \sigma_{u}(2)$
(b) $\sigma_{g}(1) \sigma_{u}(2)+\sigma_{u}(1) \sigma_{g}(2)$
(c) $\sigma_{\mathrm{g}}(1) \sigma_{\mathrm{u}}(2)-\sigma_{\mathrm{u}}(1) \sigma_{\mathrm{g}}(2)$
(d) $\sigma_{\mathrm{g}}(1) \sigma_{\mathrm{g}}(2)+\sigma_{\mathrm{u}}(1) \sigma_{\mathrm{u}}(2)$
87. The NMR spectrum of AX_{3} exhibits lines at $\delta=2.1$ and 2.3 ppm (for X type protons) and $\delta=4.1,4.3,4.5$ and 4.7 ppm (for A type protons), measured from TMS with an instrument operating at 100 MHz . The chemical shift (in ppm) of A and X protons and coupling constant (in (Hz) are respectively.
(a) 4.4, 2.2 and 20
(2) 2.2, 4.4 and 10
(c) 2.2, 4.4 and 5
(d) 4.3, 2.1 and 20
88. The character table of the $\mathrm{C}_{2 \mathrm{v}}$ point group is given below:

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	σ_{v}	$\sigma_{\mathrm{v}}^{\prime}$
A_{1}	1	1	1	1
$\mathrm{~A}_{2}$	1	1	-1	-1
$\mathrm{~B}_{1}$	1	-1	1	-1
$\mathrm{~B}_{2}$	1	-1	-1	1

The two functions $\varphi_{1}=p_{1}+2 p_{2}+2 P_{3}+p_{4}$ and $\varphi_{2}=2 p_{1}-p_{2}-P_{3}+2 p_{4}$ (where p_{k} is the p- orbital on the $\mathrm{k}^{\text {th }}$ atom of cis-butadiene and σ_{v} is the molecular plane) belong to
(a) A_{1} and A_{2} respectively
(c) Both B_{2}
(b) Both A_{2}
(d) B_{1} and B_{2} respectively.
89. If θ_{r} denotes the characteristic tempreture of rotation then the magnitude of $\left[\theta_{\mathrm{r}}\left(\mathrm{H}_{2}\right) \theta_{\mathrm{r}}\left(\mathrm{D}_{2}\right)\right] /\left[\theta_{\mathrm{r}}(\mathrm{HD})\right]^{2}$ (assume the bond lengths to be the same for all the molecules) is
(a) $2 / 3$
(b) 312
(c) $8 / 9$
(d) $9 / 8$
90. The overall reaction for the passage of 1.0 faraday of charge in the following cell

$$
\operatorname{Ag}(\mathrm{s})-\operatorname{AgCl}(\mathrm{s})\left|\mathrm{KCl}\left(\mathrm{a}_{1}\right)\right| \mathrm{KCl}\left(\mathrm{a}_{2}\right) \mid \operatorname{AgCl}(\mathrm{s})-\operatorname{Ag}(\mathrm{s})
$$

is given by (t denotes the transport numbers)
(a) $\mathrm{t}_{+} \mathrm{KCl}\left(\mathrm{a}_{1}\right) \rightarrow \mathrm{t}_{+} \mathrm{KCl}\left(\mathrm{a}_{2}\right)$
(b) $\mathrm{t}_{+} \mathrm{KCl}\left(\mathrm{a}_{2}\right) \rightarrow \mathrm{t}_{+} \mathrm{KCl}\left(\mathrm{a}_{1}\right)$
(c) $\mathrm{t}_{-} \mathrm{KCl}\left(\mathrm{a}_{1}\right) \rightarrow \mathrm{t}_{-} \mathrm{KCl}\left(\mathrm{a}_{2}\right)$
(d) $\mathrm{t}_{-} \mathrm{KCl}\left(\mathrm{a}_{2}\right) \rightarrow \mathrm{t}_{-} \mathrm{KCl}\left(\mathrm{a}_{1}\right)$
91. A system consisting of 4 identical and distinguishable particle , each possessing three available states of 1,2 and 3 units, has 10 units of energy. The number of ways, W , in which these conditions are satisfied is
(a) 2
(b) 4
(c) 6
(d) 10
92. The molar conductivities at infinite dilution Λ_{m}^{0} for $\mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{~K}_{2} \mathrm{SO}_{4}, \mathrm{KCl}, \mathrm{HCl}$ and HCOONa at 300 K are 260, 308, 150, 426 and $105 \mathrm{Scm}^{-1} \mathrm{~mol}^{-2}$ respectively. Hence Λ_{m}^{0} for formic acid in the same unit and at the same temperature is
(a) 381
(b) 405
(c) 429
(d) 531
93. If the displacement vectors of all atoms in cis- butadiene are taken as the basis vectors the characters of the reducible representation of $\mathrm{E}, \mathrm{C}_{2}, \sigma_{\mathrm{v}}$ (molecular plane) and $\sigma_{\mathrm{v}}^{\prime}$ are
(a) $30,10,30,0$
(b) $30,0,10,0$
(c) $30,20,0,0$
(d) $30,0,20,0$
94. In least square fitting of a data set $\left\{\mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}\right\}$ to the equation $\mathrm{Y}=\mathrm{A} . \mathrm{X}$, the regression coefficient (A) is estimated by
(a) $\sum \mathrm{Y}_{\mathrm{i}}^{2} / \sum \mathrm{X}_{\mathrm{i}}^{2}$
(b) $\sum \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} / \sum \mathrm{X}_{\mathrm{i}}^{2}$
(c) $\sum \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} / \sum \mathrm{Y}_{\mathrm{i}}^{2}$
(d) $\sum \mathrm{X}_{\mathrm{i}}^{2} / \sum \mathrm{Y}_{\mathrm{i}}^{2}$
95. At any temperature for the following reaction (D and T are deuterium and tritium respectively) correct statement is:
(A) $\mathrm{HCl}+\mathrm{F} \rightarrow \mathrm{HF}+\mathrm{Cl}$,(B) $\mathrm{DCl}+\mathrm{F} \rightarrow \mathrm{DF}+\mathrm{Cl}$, (C) $\mathrm{TCl}+\mathrm{F} \rightarrow \mathrm{TF}+\mathrm{Cl}$
(a) (A) is fastest
(b) (B) is fastest
(c) (C) is fastest
(d) All the above reactions have the same rate constant.
96. An example of a relaxation method of measuring rates is:
(a) Spectroscopic monitoring of product concentration.
(b) Stopped flow technique
(c) Temperature jump experiments.
(d) Measurement of spectral line widths.
97. The overall rate of the following complex reaction,

by steady state approximation would be
(a) $\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{k}_{3}[\mathrm{~A}]^{3}[\mathrm{~B}]$
(b) $\mathrm{K}_{2} \mathrm{~K}_{1} \mathrm{k}_{3}[\mathrm{~A}][\mathrm{B}]^{3}$
(c) $\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{k}_{3}[\mathrm{~A}][\mathrm{B}]^{2}$
(d) $\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{k}_{3}[\mathrm{~A}][\mathrm{B}]$
98. The vibrational energy levels, $v^{\prime \prime}=0$ and $v^{\prime}=1$ of a diatomic molecule are separated by $2143 \mathrm{~cm}^{-1}$. Its anharmonicity $\left.\left(\omega_{e}\right)^{\prime}\right)$ is $14 \mathrm{~cm}^{-1}$. The values of $\omega_{\mathrm{e}}\left(\mathrm{in} \mathrm{cm}^{-1}\right)$ and first overtone $\left(\mathrm{cm}^{-1}\right)$ of this molecule are respectively.
(a) 2143 and 4286
(b) 2157 and 4286
(c) 2157 and 4314
(d) 2171 and 4258
99. The addition polymerization of M (monomer) involves the following stages: ($\mathrm{I}=$ initiator, $\mathrm{R}=$ free radical)

$$
\begin{aligned}
& I \xrightarrow{I_{1}} \mathrm{R} \quad \text { (initiation) } \\
& R+M \xrightarrow{k_{2}} R M \\
& R M+M \rightarrow R M_{2} \text { and so on } \\
& R M_{n}+M_{n^{\prime}} R \xrightarrow{k_{3}} R-M_{n}-M_{n^{\prime}}-R
\end{aligned}
$$

The rate constant for free radical formation is $2 \times 10^{-3} \mathrm{~s}^{-1}$. The initial concentration of initiator is 10^{-} ${ }^{3} \mathrm{~mol} \mathrm{dm}^{-3}$. The overall rate of the reaction is $4 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$. Assuming steady state approximation for free radical, the kinetic chain length is:
(a) 2000
(b) 8×10^{9}
(c) 20
(d) 200
100. The electronic spectrum of $\left[\mathrm{CrF}_{6}\right]^{3-}$ shows three bands at $14,900 \mathrm{~cm}^{-1}, 22400 \mathrm{~cm}^{-1}$ and $34,800 \mathrm{~cm}^{-}$ ${ }^{1}$. The value of Δ_{0} in this case is:
(a) $5,500 \mathrm{~cm}^{-1}$
(b) $14,900 \mathrm{~cm}^{-1}$
(c) $22,400 \mathrm{~cm}^{-1}$
(d) $34,800 \mathrm{~cm}^{-1}$
101. Among the following pairs, those in which both species have similar structures are:
(A) $\mathrm{N}_{3}^{-}, \mathrm{XeF}_{2}$
(B) $\left[\mathrm{ICl}_{4}\right]^{-},\left[\mathrm{PtCl}_{4}\right]^{2-}$
(C) $\left[\mathrm{ClF}_{2}\right]^{+},\left[\mathrm{ICl}_{2}\right]^{-}$
(D) $\mathrm{XeO}_{3}, \mathrm{SO}_{3}$
(a) (A) and (B) only
(b) (A) and (C) only
(c) (A), (B) and (C) only
(d) (B), (C) and (D) only
102. The number of metal-metal bonds in the dimers, $[\mathrm{CpFe}(\mathrm{CO})(\mathrm{NO})]_{2}$ and $\left[\mathrm{CpMo}(\mathrm{CO})_{3}\right]_{2}$ respectively, are
(a) two and two
(b) two and three
(c) one and two
(d) zere and one
103. The reduction of nitrogen to ammonia, carried out by the enzyme nitrogenase, needs,
(a) 2 electrons
(b) 4 electrons
(c) 6 electrons
(d) 8 elecrons
104. In the titration of 50 mL of 0.1 M HCl with 0.1 M NaOH using methyl orange as an indicator, the end point (color change) occurs as pH reaches 4.0. The titration error is:
(a) -0.2%
(b) -84.7%
(c) $+0.2 \%$
(d) $+84.2 \%$
105. The styx code of $\mathrm{B}_{4} \mathrm{H}_{10}$ is:
(a) 4120
(b) 4220
(c) 4012
(d) 3203
106. Match list I (compounds) with list II (struetures), and select the correct answer using the codes given below.

List-I

(A) XeO_{4}
(B) BrF_{4}^{-}
(C) SeCl_{4}
(a) $(\mathrm{A}-\mathrm{ii})$
(B-iii) $\left(C_{-i}\right)$
(c) (A-ii) (B-i) (C-iii)

List-II

(i) square planar
(ii) tetrahedral
(iii) distorted tetrahedral.
107. In the trans- $\mathrm{PtCl}_{2} \mathrm{~L}(\mathrm{CO})$ complex, the CO stretching frequency for $\mathrm{L}=\mathrm{NH}_{3}$, pyridine, NMe_{3} decreases in the order.
(a) pyridine $>\mathrm{NH}_{3}>\mathrm{NMe}_{3}$
(b) $\mathrm{NH}_{3}>$ pyridine $>\mathrm{NMe}_{3}$
(c) $\mathrm{NMe}_{3}>\mathrm{NH}_{3}>$ pyridine
(d) pyridine $>\mathrm{NMe}_{3}>\mathrm{NH}_{3}$
108. For the nuclear reactions.
(A) ${ }_{4}^{8} \mathrm{Be} \longrightarrow 2{ }_{2}^{4} \mathrm{He}$
(B) ${ }_{36}^{80} \mathrm{Kr} \rightarrow 2{ }_{18}^{40} \mathrm{Ar}$
(Given masses: ${ }^{8} \mathrm{Be}=8.005300,{ }^{4} \mathrm{He}=4.002603$ and ${ }_{36}^{80} \mathrm{Kr}=79.81638,{ }_{18}^{40} \mathrm{Ar}=39.96238$)
The correct statement is:
(a) (A) and (B) are both spontaneous fission processes.
(b) (A) is spontaneous fission but (B) is not.
(c) (B) is spontaneous fission but (A) is not
(d) Both (A) and (B) are not spontaneous fission processes.
109. A metal ion that replace manganese (II) ion in mangano-proteins without changing its function, is
(a) Fe (II)
(b) Zn (II)
(c) Mg (II)
(d) Cu (II)
110. In ${ }^{57} \mathrm{Fe}^{*}$ Mossbauer experiment, source of 14.4 keV (equivalent to $3.48 \times 10^{12} \mathrm{MHz}$) is moved towards absorber at a velocity of $2.2 \mathrm{~mm} \mathrm{~s}^{-1}$. The shift in frequency of the source for this sample is:
(a) 35.5 MHz
(b) 25.5 MHz
(c) 20.2 MHz
(d) 15.5 MHz
111. Bayer's process involves.
(a) Synthesis of $\mathrm{B}_{2} \mathrm{H}_{6}$ from NaBH_{4}
(b) Synthesis of NaBH_{4} from borax
(c) Synthesis of NaBH_{4} from $\mathrm{B}_{2} \mathrm{H}_{6}^{4}$
(d) Synthesis of $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}^{4}$ from $\mathrm{B}_{2} \mathrm{H}_{6}$.
112. A true statement about base hydrolysis of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$ is:
(a) It is a first order reaction
(b) The rate determining step involves the dissociation of chloride in $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NH}_{2}\right) \mathrm{Cl}\right]^{+}$.
(c) The rate is independent of the concentration of the base
(d) The rate determining step involves the abstraction of a proton fromr $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$.
113. The catalyst involved in carrying out the metathesis of 1-butene to give ethylene and 3-hexene is:
(a)

(b) $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$
(c) $\mathrm{Co}_{2}(\mathrm{CO})_{8}, \mathrm{H}_{2}$
(d) $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$
114. The correct order of d-orbital splitting in a trigonal bipyramidal geometry is:
(a) $d_{z^{2}}>d_{x z}>d_{x^{2}-y^{2}}, d_{x y}$
(b) $\mathrm{d}_{\mathrm{xz}}, \mathrm{d}_{\mathrm{yz}}>\mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}, \mathrm{~d}_{\mathrm{xy}}>\mathrm{d}_{\mathrm{z}^{2}}$
(c) $d_{x^{2}-y^{2}}, d_{x y}>d_{z^{2}}>d_{x z}, d_{y z}$
(d) $d_{z^{2}}>d_{x^{2}-y^{2}}>d_{x y}>d_{x z}, d_{y z}$
115. For the following outer sphere electron transfer reactions.

$$
\begin{aligned}
& {\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{64}\right]^{2+}+\left[\mathrm{Co} *\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+\left[\mathrm{Co} *\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}} \\
& {\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+\left[\mathrm{Ru} *\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} \rightarrow\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+\left[\mathrm{Ru} *\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}}
\end{aligned}
$$

the rate constants are $10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and $8.2 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ respectively. This difference in the rate constants is due to
(a) A change from high spin to low spin in Co* and high spin to low spin in Ru.
(b) A change from high spin to low spin in Co^{*} and low spin to high spin Ru^{*}.
(c) A change from low spin to high spin in Co^{*} and the low spin state remains unchanged in Ru .
(d) A change from low spin to high spin in Co^{*} and high spin to low spin in Ru^{*}.
116. The greater stability of $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}_{2}-\right)_{4} \mathrm{Ti}(\mathrm{A})$ compared to that of $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2}-\right)_{4} \mathrm{Ti}(\mathrm{B})$ is due to
(a) Hyperconjugation present in complex (A)
(b) β-hydride elimination is not possible in complex (A)
(c) Steric protection of titanium from reactive species in complex (A)
(d) The stronger nature of Ti-C bond in complex (A).
117. The coordination number and geometry of cerium in $\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right]^{2-}$ are respectively,
(a) 6 and octahedron
(b) 6 and trigonal prism
(c) 8 and cubic
(d) 12 and icosahedron
118. A compound A having the composition $\mathrm{FeC}_{9} \mathrm{H}_{8} \mathrm{O}_{3}$ shows one signal at 2.5 ppm and another one around 5.0 ppm in its ${ }^{1} \mathrm{H}$ NMR spectrum. The IR spectrum of this compound shows two bands around and $1680 \mathrm{~cm}^{-1}$. The compound follows the 18 electron rule of the following statements for A, the correct one is/are
(A) It has $\eta^{5}-\mathrm{Cp}$ group.
(B) It has a terminal CO ligand.
(C) It has a CH_{3} ligand
(D) It has $\mathrm{Fe}-\mathrm{H}$ bond.
(a) (A) and (B) only
(b) (C) only
(c) (A) and (C) only
(d) (B) and (D) only.
119. In bacterial rubredoxin, the number of iron atoms, sulfur bridges and cysteine ligands are Fe atom sulfer bridge cysteine

(a)	4	4	4
(b)	2	2	4
(c)	2	2	2
(d)	1	0	4

120. In the following reaction, the product formed and the mechanism involvedare

(a) A is
 and is formed by addition-elimination mechanism.
(b) A is
 and is formed by benzyne meehanism.
(c) A is
 and is formed by benzyne mechanism.
(d) A is
 and is formed by $\mathrm{S}_{\mathrm{N}} 2$ displacement.
121. An optically active compound enriched with R-enantiomer (60% ee) exhibited $[\alpha]_{\mathrm{D}}+90^{\circ}$. If the $[\alpha]_{D}$ value of the sample is -135°, the ratio of R and S enantiomers would be
(a) $\mathrm{R}: \mathrm{S}=1: 19$
(b) $R: S=19: 1$
(c) $R: S=1: 9$
(d) $\mathrm{R}: \mathrm{S}=9: 1$
122. Match the amino acids with their structures:
(i)

(A) tryptophan
(ii)

(B) histidine
(iii)

(C) asparagine
(D) serine
(E) glutamic acid.
(a) (i)-A (ii)-E (iii)-(C)
(b) (i)-(C) (ii)-(D) (iii)-(B)
(c) (i)-(A) (ii)-(B) (iii)-(D)
(d) (i)-(C) (ii)-(A) (iii)-(B)
123. Statement I. $\mathrm{U}(\mathrm{VI})$ is more stable than $\mathrm{Nd}(\mathrm{VI})$.

Statement II. The valence electrons in U are in 5f, 6d and 7s orbitals.
(a) Statements I and II are correct and Statement II is correct explanation of I.
(b) Statements I and II are correct but Statement II is not an explanation for Statement I.
(c) Statements I is correct and Statement II is incorrect.
(d) Statements I and II both are incorrect.
124. The major products A and B in the following reaction sequence are

(a) $\mathrm{A}=$

(b)

(b) $\mathrm{A}=$

$\mathrm{A}=$

(c)

(d) $\mathrm{A}=$

125. The major products A and B in the following reaction sequence are

(a) $A=$

(b)
 $B=$

(c) $A=$

(d)

$B=$

126. An organic compound having molecular formula $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}$ exhibited the following ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data.
${ }^{1} \mathrm{H}$ NMR : $\delta 2.4(\mathrm{~s}), 7.2(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}), 7.7(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz})$
${ }^{13} \mathrm{C}$ NMR : $\delta 21.0,129.0,130.0,136.0,141.0,190.0$
(a)

(b)

(c)

(d)

127. Identify appropriate reagents A and B in the following reactions.

(a) $\mathrm{A}=\mathrm{LiAlH}_{4}$
$\mathrm{B}=\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$
(b) $\mathrm{A}=\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$
B $=\mathrm{LiAlH}_{4}$
(c) $\mathrm{A}=\mathrm{LiBH}_{4}$
$\mathrm{B}=\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$
(d) $\mathrm{A}=\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$
$\mathrm{B}=\mathrm{LiBH}_{4}$
128. The correct sequence of the reagents to be employed in the following transformation is:

(a) (A) m-CPBA; (B) TsNHNH_{2}; (C) AcOH; (D) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{BaSO}_{4}$
(b) $(\mathrm{A}) \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH} ;$ (B) $\mathrm{NH}_{2} \mathrm{NH}_{2}$; (C) $\mathrm{AcOH} ;$ (D) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$
(c) (A) m-CPBA; (B) TsNHNH ${ }_{2}$; (C) $\mathrm{NaOH} ;$ (D) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$
(d) (A) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH} ;$ (B) TsNHNH_{2}; (C) AcOH ; (d) H_{2}, Lîndlar's catalyst
129. Reaction of 11.6 g of the aldehyde A with 462 mg of Wilkinson's catalyst provided 9.2 g of alkene B. The $\mathrm{mol} \%$ of the catalyst used and the yield of the reaetion, approximately are

(a) $1.0 \mathrm{~mol} \%$; and 80%
(b) $1.0 \mathrm{~mol} \%$; and 90%
(c) $0.1 \mathrm{~mol} \%$; and 90%
(d) $0.2 \mathrm{~mol} \%$; and 80%
130. The major products A and B in the following reaction sequence are

(a)

(b)

(c)

(d)

131. The major products A and B in the following reaction sequence are

(a) $\mathrm{A}=\mathrm{Ph}^{2} \longrightarrow \mathrm{OH}$

(b) $\mathrm{A}=\mathrm{Ph}^{2} \longrightarrow \mathrm{OH}$

(c) $\mathrm{A}=\mathrm{Ph}$

(d)

132. The major products A and B in the following reaction sequence are

(a) $\mathrm{A}=$
 $\mathrm{B}=$

(b) $\mathrm{A}=$

(c) $\mathrm{A}=$
 $B=$

(d) $\mathrm{A}=$

B =

133. Appropriate ${ }^{1} \mathrm{H}$ NMR chemical shifts (δ) for the protons A-D for the following compound are

(a) A-6.8; $\mathrm{B}-5.7$; $\mathrm{C}-3.9 ; \mathrm{D}-2.1 \mathrm{ppm}$
(b) A-6.8; B-5.7; C-2.1; D -3.9 ppm
(c) A-5.7; B-6.8; C-3.9; D -2.1 ppm
(d) A-5.7; B-6.8; C-2.1; D -3.9 ppm
134. The major product formed in the following reaction sequence is:

(a)

(b)

(c)

(d)

135. Citronellol A on oxidation with pyridinium chlorochromate (PCC) followed by treatment with aq. sodium hydroxide gives the product B (IR : $1680 \mathrm{~cm}^{-1}$); whereas oxidation with PCC in the presence of sodium acetate gives product C (IR: $1720 \mathrm{~cm}^{-1}$). Compound B and C are

(a) $\mathrm{B}=$

(b) $\mathrm{B}=$

(c) $\mathrm{B}=$

(d)

136. Match the following starting compounds withcorresponding products in photochemical reactions:

Starting material

(i)

Products
(A)

(B)

(C)

(D)

(E)

(a) (i) - (E) (ii)-(A) (iii)-(B)
(b) (i)-(A) (ii)-(C) (iii)-(b)
(c) (i)-(D) (ii)-(C) (iii)-(A)
(d) (i)-(E) (ii)-(A) (iii)-(D)
137. The major products A and B in the following reaction sequence are

(a) $\mathrm{A}=$
 $B=$

(b) $\mathrm{A}=$

B =

(c) $\mathrm{A}=$

${ }^{(d)} \mathrm{A}=$

$B=$

138. The major products A and B of the following reaction sequence are

(a) $\mathrm{A}=$

(b) $\mathrm{A}=$

$B=$

(c) $\mathrm{A}=$
 $B=$

(d) $\mathrm{A}=$

139. The major products A and B in the following reactionsequence are

(a) $\mathrm{A}=$
 $\mathrm{B}=$

(b)

(d) $\mathrm{A}=$

$B=$

(c) $\mathrm{A}=$

140. The major products A and B in the following reaction sequence are

(a) $\mathrm{A}=$

$B=$

(b) $\mathrm{A}=$

(c) $\mathrm{A}=$

$B=$

(d) $\mathrm{A}=$

$B=$

141. The correct reagents for effecting the following reactions are

142. The major product A and B of the following reaction sequence are

(a) $\mathrm{A}=$

(b) $\mathrm{A}=$

(c) $\mathrm{A}=$

(d) $\mathrm{A}=$

143. The major products A and B in the following synthetic sequence are

(a) $\mathrm{A}=$

(b) $\mathrm{A}=$

(c) $\mathrm{A}=$
 $B=$

(d) $\mathrm{A}=$

144. The major products A and B in the following synthetic strategy are

(a) $\mathrm{A}=$

${ }^{(c)} \mathrm{A}=$

(d) $\mathrm{A}=$

2. $\mathrm{LDA},-78^{\circ} \mathrm{C}, \mathrm{Mel}$
Ozonolysis
145. The product formed and the process involved in the following reaction are

(a)

[3,3]-sigmatropic rearrangement
(b)

[1,3]-sigmatropic rearrangement
(c)

[5,5]-sigmatropic rearrangement
(d)

[1,5]-sigmatropic rearrangement

