Dec- 2012

BOOKLET-[A]

Part-B

21.	For an odd nucleon i (a) 9/2 and (+)	n 'g' nuclear orbital an (b) 7/2 and (+)	d parallel to I, spin and (c) 9/2 and (–)	l parity are (d) 7/2 and (–)		
22.	For the deposition of (a) PbCl ₂	Pb by electroplating, t (b) PbSO ₄	the best suited compound (c) Pb(Et) ₄	and among the following is (d) $Pb(BF_4)_2$.		
23.	Appropriate reasons (A) Monochromatici (B) Association of an (a) A, B and D	for the deviation form ty of light nalyte (b) B, C and D	the Beer's law among (C) Very high concer (D) Dissociation of a (c) A, C and D	the following are ntration of analyte nalyte. (d) A, B and C		
24.	Which one of the fol (a) $La(OH)_3$	lowing shows the high (b) Nd(OH) ₃	est solubility in hot con (c) Sm(OH) ₃	ncentrated aqueous NaOH? (d) Lu(OH) ₃ .		
25.	In the vibrational specinfrared and Raman a (a) Three	ectrum of CO ₂ , the nun are (b) Two	nber of fundamental vil	brational modes common in both (d) Zero		
26.	The light pink color of $[Co(H_2O)_6]^{2+}$ and the deep blue color of $[CoCl_4]^{2-}$ are due to (a) MLCT transition in the first and d-d transition in the second (b) LMCT transition in both (c) d-d transitions in both (d) d-d transition in the first and MLCT transition in the second.					
27.	In $\left[Mo_2(S_2)_6 \right]^{2-}$ c tively, are (a) 2 and 8	luster the number of br	idging S_2^{2-} and coordin (c) 1 and 8	nation number of Mo respec-		
28.	¹ H NMR spectrum o (a) a singlet (c) a triplet with inte	f HD would show	(b) a doublet(d) a triplet with interview	nsity ratio 1:1:1		
29.	The number of possible isomers of $\left[\operatorname{Ru}(\operatorname{PPh}_3)_2(\operatorname{acac})_2\right](\operatorname{acac} = \operatorname{acetylacetonate})$ is:					
30.	(a) 2The total number of(a) 10	(b) 3 Cu–O bonds present in (b) 6	(c) 4 the crystalline copper (c) 8	(d) 5 (II) acetate monohydrate is: (d) 4		
31.	The electronegativity differences is the highest for the pair					
	(a) Li, Cl	(b) K, F	(c) Na, Cl	(d) Li, F		
32.	Which ones among CO_3^{2-} , SO_3 , XeO_3 and NO_3^{-} have planar structure?					
	(a) CO_3^{2-} , SO ₃ and XeO ₃		(b) SO_3 , XeO_3 and NO_3^-			
	(c) CO_3^{2-} , XeO ₃ and NO ₃ ⁻		(d) CO_3^{2-} , SO ₃ and NO ₃ ⁻			

The substitution of $\eta^5 - Cp$ group with nitric oxide is the easiest for 33.

lead(II), mercury (II) or copper(II). The structure of penicillamine is

- 38. The molecular that has an S_6 symmetry element is (b) CH₄ (a) $B_{2}H_{6}$ (c) PH₅ (d) SF_{6}
- The electric dipole allowed transition in a d² atomic system is 39.

(a) ${}^{3}F \rightarrow {}^{1}D$ (b) ${}^{3}F \rightarrow {}^{1}P$ (c) ${}^{3}F \rightarrow {}^{3}D$ (d) ${}^{3}F \rightarrow {}^{3}P$

40. When a hydrogen atom is placed in an electric field along the y-axis, the orbital that mixes most with the ground state 1s orbital is (a) 2s (b) 2p_ (c) $2p_{y}$ (d) $2p_{r}$

(a) $\frac{56875}{15125}$	(b) $\frac{15125}{56875}$	(c) 72000	(d) 41750
10120	00010		

Jia Sarai,Near IIT Delhi-110016

- 52. The angle between the two planes represented by the Miller indices (1 1 0) and (1 1 1) in a simple cubic lattice is:
 - (a) 30° (b) 45° (c) 60° (d) 90°
- 53. The correct representation of the variation of molar conductivity (y-axis) with surfactant concentration (x-axis) is [CMC = critical micelle concentration].

55. If the pK_a value for p-methoxybenzoic acid is 4.46 and that of benzoic acid is 4.19, the σ_{para} for methoxy group is: (a) 8.65 (b) 4.32 (c) 0.27 (d) - 0.27

54.

56. The biosynthetic precursor of cadinene is:

(a) shikimic acid (b) mevalonic acid (c) arachidonic acid (d) prephenic acid.

57. The correct order of acidity of the compounds A - C is:

61. A tripeptide gives the following products on Edman degradation.

Br¹

78. For the molecule below,

(c) (A-iii), (B-i), (C-iv), (D-ii)

Jia Sarai, Near IIT Delhi-110016

(d) (A-iv), (B-iii), (C-ii), (D-i)

- 86. A solution of 2.0 g of brass was analysed for Cu electrogravimetrically using Pt-gauze as electrode. The weight of Pt-gauze changed from 14.5g to 16.0 g. The percentage weight of Cu in brass is
 (a) 50
 (b) 55
 (c) 60
 (d) 75
- 87. The platinum complex of NH_3 and Cl^- ligands is an anti-tumour agent. The correct isomeric formula of the complex and its precursor are (a) cis-Pt(NH_3)₂Cl₂ and PtCl₄²⁻ (b) trans-Pt(NH_3)₂Cl₂ and PtCl₄²⁻ (c) cis-Pt(NH_3)₂Cl₂ and Pt(NH_3)₄²⁺ (d) trans-Pt(NH_3)₂Cl₂ and Pt(NH_3)₄²⁻
- 88. Successive addition of NaCl, H_3PO_4 , KSCN and NaF to a solutin of $Fe(NO_3)_3.9H_2O$ gives yellow, colourless, red and again colorless solutions due to the respective formation of:

(a)
$$\left[\text{Fe}(\text{H}_{2}\text{O})_{5} \text{Cl} \right]^{2+}$$
, $\left[\text{Fe}(\text{H}_{2}\text{O})_{5}(\text{PO}_{4}) \right]$, $\left[\text{Fe}(\text{H}_{2}\text{O})_{5}(\text{SCN}) \right]^{2+}$, $\left[\text{Fe}(\text{H}_{2}\text{O})_{5} \text{F} \right]^{2+}$
(b) $\left[\text{Fe}(\text{H}_{2}\text{O})_{4} \text{Cl}(\text{OH}) \right]^{+}$, $\left[\text{Fe}(\text{H}_{2}\text{O})_{5}(\text{PO}_{4}) \right]$, $\left[\text{Fe}(\text{H}_{2}\text{O})_{5}(\text{SCN}) \right]^{2-}$, $\left[\text{Fe}(\text{H}_{2}\text{O})_{5} \text{F} \right]^{2+}$
(c) $\left[\text{Fe}(\text{H}_{2}\text{O})_{4} (\text{Cl}) \right]^{2+}$, $\left[\text{Fe}(\text{H}_{2}\text{O})_{1} \right]^{3+}$, $\left[\text{Fe}(\text{H}_{2}\text{O})_{5}(\text{SCN}) \right]^{2+}$, $\left[\text{Fe}(\text{H}_{2}\text{O})_{5} \text{F} \right]^{2+}$

(d)
$$\left[Fe(H_2O)_5 Cl \right]^{2+}$$
, $\left[Fe(H_2O)_5 (PO_4) \right]$, $\left[Fe(H_2O)_5 (SCN) \right]^{2+}$, $Fe(H_2O)_4 (SCN)F^{-1}$

- 89. Which one of the following will NOT undergo oxidative addition by methyl iodide?
 - (a) $\left[Rh(CO)_{2} I_{2} \right]^{-}$ (b) $\left[Ir(PPh_{3})_{2} (CO)Cl \right]$ (c) $\left[\eta^{2} - CpRh(CO)_{2} \right]$ (d) $\left[\eta^{5} - Cp_{2}Ti(Me)Cl \right]$

90. In hydrofomylation reaction using $\left[Rh(RPh_3)_3(CO)(H) \right]$ as the catalyst, addition of excess PPh₃ would

- (a) increase the rate of reaction(b) decrease the(c) not influence of the rate of reaction(d) stop the reaction
 - (b) decrease the rate of reaction.(d) stop the reaction.
- 91. Find out the number of lines in the ³¹P NMR signal for

- 92.The rate of exchange of OH_2 present in the coordination sphere by ${}^{18}OH_2$ of, (i) $[Cu(OH_2)_6]^{2+}$, (ii) $[Mn(OH_2)_6]^{2+}$, (iii) $Fe(OH_2)_6]^{2+}$, (iv) $[Ni(OH_2)_6]^{2+}$, follows an order(a) (i) > (ii) > (iii) > (iv)(b) (i) > (iv) > (iii) > (ii)(c) (ii) > (iii) > (iv) > (i)(d) (iii) > (iv) > (iv)
- 93. Based on the behaviour of the metalloenzymes, consider the following statements
 - (A) In the enzymes, the zinc activates O_2 to form peroxide species.
 - (B) In the enzymes, the zinc activates H_2O and provides a zinc boud hydroxide.
 - (C) In the oxidases, the iron activates O_2 to break the bonding between the two oxygens
 - (D) Zinc ion acts as a nucleophile and attacks at the peptide carbonyl $% \left(D\right) =\left(D\right) \left(D\right) \left($
 - The set of correct statements is,
 - (a) A and B (b) B and C (c) C and D (d) A and D

(a) 3

Jia Sarai, Near IIT Delhi-110016

94. Fe²⁺-porphyrins fail to exhibit reversible oxygen transport and cannot differentiate CO from O_2 . However, the hemoglobin is free from both these pit falls. Among the following (A) Fe²⁺ - porphyrins undergo μ -oxodimer formation and the same is prevented in case of the hemoglobin.

(B) Fe–CO bond strength is much low in case of hemoglobin when compared to the Fe^{2+} - porphyrins.

(C) While Fe–CO is linear, Fe– O_2 is bent and is recognized by hemoglobin

(D) The interlinked four monomeric units in the hemoglobin are responsible to overcome the pit-falls.

The correct set of statements is (a) A and B (b) A and C (c) C and D (d) B and D

95. Reactions A and B are, termed as respectively.

(A) SnCl_2 + $\operatorname{Co}_2(\operatorname{CO})_8$ \longrightarrow (CO)₄Co $-\operatorname{Sn-Co}(\operatorname{OC})_4$ (B) $\operatorname{Me}_2\operatorname{SnCl}_2$ + $2\operatorname{NaRe}(\operatorname{CO})_5$ \longrightarrow (CO)₅Re $-\operatorname{Sn-Re}(\operatorname{OC})$ (CO)₅Re $-\operatorname{Sn-Re}(\operatorname{OC})$ $Re(OC)_5 + 2NaCl$ (b) Metathesis, insertion (a) Insertion, Metathesis (c) Oxidative, addition, metathesis (d) Oxidative addition, insertion A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 96. g/cc, the molar mass of the metal is close to (a) 23 (b) 24 (c) 25 (d) 26 The activation energy for the bimolecular reaction $A + BC \rightarrow AB + C$ is E_0 in the gas phase. If the 97. reaction is carried out in a confined volume of λ^3 , the activation energy is expected to (a) remain unchanged (b) increase with decreasing λ . (c) decrease with decreasing λ . (d) oscillate with decreasing λ . 98. In a many-electron atom, the total orbital angular momentum (L) and spin (S) are good quantum numbers instead of the individual orbital (l_1, l_2) and spin (s_1, s_2) angular momenta in the presence of

- (a) inter-electron repulsion (b) spin-orbit interaction
 - (c) hyperfine coupling (d) external magnetic field.
- 99.The packing fraction of a simple cubic lattice is close to
(a) 0.94(b) 0.76(c) 0.52(d) 0.45
- 100. The number of IR active vibrational modes of pyridine is:

	C _{2v}	E_2	C ₂	$\sigma_{\rm v}$	σ_v	
	A ₁	1	1	1	1	Z
	A_2	1	1	-1	-1	R _z
	B ₁	1	-1	1	-1	x, R _y
	B ₂	1	-1	-1	1	y, R _x
(b) 20)			(c) 2	4	

(a) 12

(d) 33

- One of the excited states of Ti has the electric configuration $[Ar] 4s^2 3d^1 4p^1$. The number of 101. microstates with zero total spin (S) for this configuration is (a) 9 (b) 15 (c) 27 (d) 60
- 102. For the reaction $A_2 \implies 2A$ in a closed container, the relation between the degree of dissociation
 - (α) and the equilibrium constant K_{p} at a fixed temperature is given by

(a)
$$\alpha = \left[K_p / (K_p + 4p) \right]$$

(b) $\alpha = \left[K_p / (K_p + 4p) \right]^{\frac{1}{2}}$
(c) $\alpha = \left[(K_p + 4p) / K_p \right]$
(d) $\alpha = \left[(K_p + 4p) / K_p \right]^{\frac{1}{2}}$

The fugacity of a gas depends on pressure and the compressibility factor $Z(=p\overline{V}/RT)$ through the 103.

relation $(\vec{V} \text{ is the molar volume})$ For most gases at temperature T and up to moderate pressure, this equation shows that (a) f < p, if $T \rightarrow 0$ (b) f < p, if $T \rightarrow \infty$ (c) f > p, if $T \rightarrow 0$ (d) f = p, if $T \rightarrow 0$

The internal pressure $(\partial U/\partial V)_T$ of a real gas is related to the compressibility factor $Z = p\overline{V}/RT$ by 104.

$$\begin{bmatrix} \overline{V} \text{ is the molar volume} \end{bmatrix}$$
(a) $(\partial U/\partial V)_{T} = RT (\partial Z/\partial V)_{T}$
(b) $(\partial U/\partial V)_{T} = RT / (\overline{V} Z)$
(c) $(\partial U/\partial V)_{T} = (RT^{2} / \overline{V}) (\partial Z/\partial T)_{V}$
(d) $(\partial U/\partial V)_{T} = (\overline{V} / RT^{2}) (\partial Z/\partial T)_{V}$

Suppose, the ground stationary state of a harmonic oscillator with force constant 'k' is given by 105.

 $\psi_0 = \exp\left[-Ax^2\right]$ Then, A should depend on k as (a) $A \propto k^{-\frac{1}{2}}$ (b) $A \propto k^{-\frac{1}{2}}$ (c) $A \propto k^{\frac{1}{2}}$ (d) $A \propto k^{\frac{1}{3}}$

Combining two real wave functions ϕ_1 and ϕ_2 , the following functions are constructed: $A = \phi_1 + \phi_2$, 106.

 $B = \phi_1 + i\phi_2$, $C = \phi_1 - i\phi_2$, $D = i(\phi_1 + \phi_2)$. The correct statement will then be

(a) A and B represent the same state (b) A and C represent the same state.

(c) A and D represents the same state

- (d) B and D represent the same state.
- 107. Crystal A diffracts from (1 1 1) and (2 0 0) planes but not from (1 1 0) plane, while the crystal B diffracts from (1 1 0) and (2 0 0) planes but not from the (1 1 1) plane. From the above, we may conclude that

- (c) A and B both have fcc lattice
- (a) A has fcc lattice while B has bcc lattice (b) A has bcc lattice while B has fcc lattice
 - (d) A and B both have bcc lattice.

- 108. The decomposition of NH_3 on Mo surface follows Langmuir-Hinshelwood mechanism. The decomposition was carried out at low pressures. The initial pressure of NH_3 was 10^{-2} torr. The pressure of NH_3 was reduced to 10^{-4} torr in 10 minutes. The rate constant of decomposition of NH_3 is:
 - (a) $9.9 \times 10^{-4} \text{ torr min}^{-1}$ (b) 0.4606 min^{-1}

(c) 9.9×10^{-3} torr min⁻¹ (d) 0.693 min^{-1}

109. A polymer sample has the following composition.

	Number of molecules	Molecular weight					
	10	1000					
	50	2000					
	40	4000					
The polydispersity inde	ex (P.D.I) of the polyme	r is	×.				
(a) $\frac{85000}{27}$ (b)	(b) $\frac{85}{81}$ (c)	$(2) \frac{850}{729}$	(d) $\frac{729}{850}$				
The equilibrium constant for an electrochemical reaction,							
	$2Fe^{3+} + Sn^{2+} \Longrightarrow 2Fe^{2}$	$^{2+} + Sn^{4+}$					
is $\left[E^0 \left(Fe^{3+} / Fe^{2+} \right) = 0.75 \text{ V}, E^0 \left(Sn^{4+} / Sn^{2+} \right) = 0.15 \text{ V}, (2.303 \text{ RT} / F) = 0.06 \text{ V} \right]$							
(a) 10^{10}	(b) 10^{20} (c)	c) 10^{30}	(d) 10^{40} .				
A bacterial colony grov	vs most commonly by c	ell division. The char	nge in the no				

111. A bacterial colony grows most commonly by cell division. The change in the population due to cell division in an actively growing colony is $dN = \lambda_g N dt$. The population of bacterial colony at time 't'

is
$$\begin{bmatrix} N_0 = N(t=0) \end{bmatrix}$$

(a) $N_0 \lambda_g t$
(b) $N_0 \exp[-\lambda_g t]$
(c) $N_0 \exp[\lambda_g t]$
(d) $N_0 (\lambda_g t)^2$

112. The Arrhenius parameters for the thermal decomposition of NOCl, $2\text{NOCl}(g) \rightarrow 2\text{NO}(g) + \text{Cl}_2(g)$, are $A = 10^{13} \text{M}^{-1} \text{s}^{-1}$, $E_a = 105 \text{ kJ mol}^{-1}$ and $RT = 2.5 \text{ kJ mol}^{-1}$. The enthalpy (in kJ mol⁻¹) of the activated complex will be

- (a) 110 (b) 105 (c) 102.5 (d) 100
- 113. The rotational partition function of H_2 is:

(a)
$$\sum_{J=0, 1, 2,...} (2J+1) e^{-\beta h c B J (J+1)}$$
 (b) $\sum_{J=1,3, 5,...} (2J+1) e^{-\beta h c B J (J+1)}$
(c) $\sum_{J=0,2,4,...} (2J+1) e^{-\beta h c B J (J+1)}$
(d) $\frac{1}{4} \left[\sum_{J=0,2,4,...} (2J+1) e^{-\beta h c B J (J+1)} + 3 \sum_{J=1,3,5,...} (2J+1) e^{-\beta h c B J (J+1)} \right]$

110.

114. The potential in Debye-Hückel theory is proportional to

(a) $1/\kappa r$ (b) $\exp[-\kappa r]$ (c) $\exp[-\kappa r]/r$ (d) κr

- 115. The vibrational frequency and anharmonicity constant of an alkali halide are 300 cm⁻¹ and 0.0025 respectively. The positions (in cm⁻¹) of its fundamental mode and first overtone are respectively. (a) 300, 600 (b) 298.5, 595.5 (c) 301.5, 604.5 (d) 290, 580
- 116. The adsorption of a gas is described by the Langmuir isotherm with the equilibrium constant $K = 0.9 \text{ kPa}^{-1}$ at 25°C. The pressure (in kPa) at which the fractional surface coverage is 0.95, is (a) 1/11.1 (b) 21.1 (c) 11.1 (d) 42.2
- 117. The energy of a harmonic oscillator in its ground state is $\frac{1}{2}\hbar\omega$. According to the virial theorem, the average kinetic (T) and potential (V) energies of the above are
 - (a) $T = \frac{1}{4}\hbar\omega;$ $V = \frac{1}{4}\hbar\omega$ (b) $T = \frac{1}{8}\hbar\omega;$ $V = \frac{3}{8}\hbar\omega$ (c) $T = \hbar\omega;$ $V = -\frac{1}{2}\hbar\omega$ (d) $T = \frac{3}{8}\hbar\omega;$ $V = \frac{1}{8}\hbar\omega$
- 118. The energy of a hydrogen atom in a state is $-\frac{hcR_H}{25}(R_H = Rydberg constant)$. The degeneracy of the state will be (a) 5 (b) 10 (25 (d) 50
- 119. The trial wave function of a system is expanded as $\psi_t = c_1 \phi_1 + c_2 \phi_2$. The matrix elements of the Hamiltonian are $\langle \phi_1 | H | \phi_1 \rangle = 0$; $\langle \phi_1 | H | \phi_2 \rangle = 2.0 = \langle \phi_2 | H | \phi_1 \rangle$ and $\langle \phi_2 | H | \phi_2 \rangle = 3.0$. The approximate ground-state energy of the system from the linear variational principle is (a) -1.0 (b) -2.0 (c) +4.0 (d) +5.0
- 120. One molecular orbital of a polar molecule AB has the form $c_A \psi_A + c_B \psi_B$, where ψ_A and ψ_B are normalized atomic oribitals centred on A and B, respectively. The electron in this orbital is found on atom B with a probability of 90%. Neglecting the overalp between ψ_A and ψ_B , a possible set of c_A and c_B is:
 - (a) $c_A = 0.95, c_B = 0.32$ (b) $c_A = 0.10, c_B = 0.90$

(c)
$$c_A = -0.95, c_B = 0.32$$
 (d) $c_A = 0.32, c_B = 0.95$

121. 4-Hydroxybenzoic acid exhibited signals at δ 171, 162, 133, 122 and 116 ppm in its broadband decoupoled ¹³C NMR spectrum. The correct assignment of the signals is

(a)
$$\delta 171(C-4), 162(COOH), 133(C-3 \& 5), 122(C-1) \text{ and } 116(C-2 \& 6)$$

- (b) $\delta 171(COOH)$, 162(C-4), 133(C-2 & 6), 122(C-1) and 116(C-3 & 5)
- (c) $\delta 171(C-4)$, 162(COOH), 133(C-2 & 6), 122(C-1) and 116(C-3 & 5)
- (d) $\delta 171(COOH)$, 162(C-4), 133(C-3 & 5), 122(C-1) and 116(C-2 & 6)

122. An organic compound $(C_9H_{10}O_3)$ exhibited the following spectral data: IR: 3400, 1680 cm⁻¹; ¹H NMR: δ 7.8(1H, d, J = 8 Hz), 7.0 (1 H, d, J = 8Hz), 6.5 (1 H, s), 5.8 (1 H, s, D₂O exchangeable), 3.9(3H, s), 2.3 (3 H, s). The compound is

- 123. The $[\alpha]_D$ of a 90% optically pure 2-arylpropanoic acid solution is +135°. On treatment with a base at RT for one hour, $[\alpha]_D$ changed to +120°. The optical purity is reduced to 40% after 3 hours. If so, the optical purity of the solution after 1 hour, and its $[\alpha]_D$ after 3 hours, respectively, would be (a) 80% and 60° (b) 70% and 40° (c) 80% and 90° (d) 70% and 60°
- 124. In the following pericyclic reaction, the structure of the allene formed and its configuration are

125. In the following sequence of pericyclic reactions X and Y are

- (b) a carbenium ion as reactive intermediate, and a cycloaddition.
- (c) a 1, 3-dipolar species as reactive intermediate, and an aza Witting reaction.
- (d) a carbanion as reactive intermediate, and an aza Cope rearrangement.

- (a) an iminium ion, [3, 3]-sigmatropic shift and Mannich reaction.
- (b) a nitrenium ion, [3, 3]-sigmatropic shift and Michael reaction.
- (c) an iminium ion, [1, 3]-sigmatropic shift and Mannich reaction.
- (d) a nitrenium ion, [1, 3]-sigmatropic shift and Michael reaction.
- 129. With respect to the following biogenetic conversion of chorismic acid (A) to 4-hydroxyphenylpyruvic acid (C), the correct statement is

132. In the following reaction A and B are

135. reaction is

H₂, Pd, 250°C ′́″и_{Ме} (e, e conformer) (a) 0.9 kcal/mol (b) 1.8 kcal/mol (c) 2.7 kcal/mol (d) 3.6 kcal/mol

Jia Sarai, Near IIT Delhi-110016

136. In the following reaction, the reagent A and the major product B are

138. 12.0 g of acetophenone on reaction with 76.2 g of iodine in the presence of aq. NaOH gave solid A in 75% yield. Approximate amount of A obtained in the reaction and its structure are (a) 80 g, Cl_4 (b) 40 g, Cl_4 (c) 60 g, CHI_3 (d) 30 g, CHI_3 .

- (a) Ph D Ph (b) Ph D D D(c) Ph D Ph (d) Ph Ph Ph Ph
- 142. The major product B formed in the following reaction sequence is

D

SnBu₃

