Dec-2014
 BOOKLET-[A]
 PART - B

21. The reaction between SbF_{5} and two equivalents of HF leads to the formation of
(a) $\mathrm{H}_{2} \mathrm{SbF}_{3}+2 \mathrm{~F}_{2}$
(b) $\mathrm{HSbF}_{2}+3 \mathrm{~F}_{2}$
(c) $\mathrm{SbF}_{3}+\mathrm{H}_{2}+2 \mathrm{~F}_{2}$
(d) $\left[\mathrm{SbF}_{6}\right]^{-}\left[\mathrm{H}_{2} \mathrm{~F}\right]^{+}$
22. The δ-bond is formed via the overlap of
(a) $d_{x^{2}}-y^{2}$ and $d_{x^{2}}-y^{2}$ orbitals
(b) $d_{x z}$ and $d_{x z}$ orbitals
(c) $d_{x y}$ and $d_{x y}$ orbitals
(d) $d_{y z}$ and $d_{y z}$ orbitals
23. Among $\mathrm{F}^{-}, \mathrm{Na}^{+}, \mathrm{O}^{2-}$ and Mg^{2+} ions, those having the highest and the lowest ionic radii respectively are
(a) O^{2-} and Na^{+}
(b) F^{-}and Mg^{2+}
(c) O^{2-} and Mg^{2+}
(d) Mg^{2+} and O^{2-}
24. The extent of π-electron conjugation in macrocyclic rings of (1) heme, (2) coenzyme B_{12} and (3) chlorophyll follows the order
(a) $(1)>(3)>(2)$
(b) $(1)>(2)>(3)$
(c) $(3)>(1)>(2)$
(d) $(2) \approx(1)>(3)$
25. The correct order of the retention of cations on a sulfonated cation exchange resin column is
(a) $\mathrm{Ag}^{+}>\mathrm{K}^{+}>\mathrm{Na}^{+}>\mathrm{Li}^{+}$
(b) $\mathrm{K}>\mathrm{Na}^{+}>\mathrm{Ag}^{+}>\mathrm{Li}^{+}$
(c) $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Ag}^{+}$
(d) $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{Ag}^{+}>\mathrm{K}^{+}$
26. In a polarographic measurement, (aqueous KCl solution used as supporting electrolyte) an applied potential more than +0.4 V , results mainly in the formation of
(a) Hg^{I}
(b) $\mathrm{Hg}^{\mathrm{II}}$
(c) Cl_{2}
(d) O_{2}
27. The correct order of the isomeric shift in Mössbauer spectra (${ }^{57} \mathrm{Fe}$ source) of iron compounds is
(a) Fe (II) $>\mathrm{Fe}$ (III) $>\mathrm{Fe}$ (IV)
(b) Fe (III) $>\mathrm{Fe}($ II) $>\mathrm{Fe}$ (IV)
(c) Fe (IV) $>\mathrm{Fe}($ III $)>\mathrm{Fe}$ (II)
(d) Fe (IV) $>\mathrm{Fe}$ (II) $>\mathrm{Fe}$ (III)
28. The hapticities ' x ' and ' y ' of the arene moieties in the diamagnetic complex $\left[\left(\eta^{x}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}\left(\eta-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]$ respectively are
(a) 6 and 6
(b) 4 and 4
(c) 4 and 6
(d) 6 and 2
29. The rate of the reaction $\mathrm{Ni}(\mathrm{CO})_{4}+\mathrm{PPh}_{3} \xrightarrow{h \nu}\left[\mathrm{Ni}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)\right]+\mathrm{CO}$ depends on
(a) Concentration of both the reactants
(b) Concentration of $\mathrm{Ni}(\mathrm{CO})_{4}$ only
(c) Concentration of PPh_{3} only
(d) The steric bulk of PPh_{3}
30. The product of the reaction of propene, CO and H_{2} in the presence of $\mathrm{CO}_{2}(\mathrm{CO})_{8}$ as a catalyst is
(a) Butanoic acid
(b) Butanal
(c) 2-butanone
(d) Methylpropanoate
31. The S and L values for ${ }^{15} \mathrm{~N}$ atom respectively, are
(a) $\frac{1}{2}$ and 1
(b) $\frac{1}{2}$ and 0
(c) 1 and 0
(d) $\frac{3}{2}$ and 0
*32. The point group symmetries for trans- $\left[\mathrm{Cr}(\mathrm{en})_{2} \mathrm{~F}_{2}\right]^{+}$and $\left[\mathrm{TiCl}_{6}\right]^{3-}$, respectively, are
(a) $\mathrm{D}_{4 \mathrm{~d}}$ and $\mathrm{D}_{3 \mathrm{~d}}$
(b) $\mathrm{D}_{3 \mathrm{~d}}$ and $\mathrm{D}_{4 \mathrm{~d}}$
(c) $\mathrm{D}_{4 \mathrm{~h}}$ and $\mathrm{D}_{3 \mathrm{~h}}$
(d) $\mathrm{D}_{3 \mathrm{~h}}$ and $\mathrm{D}_{4 \mathrm{~h}}$
32. $\mathrm{Co}_{4}(\mathrm{CO})_{12}$ adopts the
(a) closo-structure
(b) nido-structure
(c) arachno-structure
(d) hypho-structure
33. Reductive elimination step in hydrogenation of alkenes by Wilkinson catalyst results in (neglecting solvent in coordination sphere of Rh)
(a) T-shaped $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}\right]$
(b) Trigonal-planar $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}\right]^{2+}$
(c) T-shaped $\left[\mathrm{Rh}(\mathrm{H})\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\right]^{+}$
(d) Trigonal-planar $\left[\mathrm{Rh}(\mathrm{H})\left(\mathrm{PPh}_{3}\right)_{2}\right]$
34. In the following reaction $\left[\mathrm{PtCl}_{4}\right]^{2-}+\mathrm{NO}_{2}^{-} \rightarrow \mathrm{A} \xrightarrow{\mathrm{NH}_{3}} \mathrm{~B}$, compound B is
(a) trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{NO}_{2}\right)\left(\mathrm{NH}_{3}\right)\right]^{-}$
(b) cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{NO}_{2}\right)\left(\mathrm{NH}_{3}\right)\right]^{-}$
(c) trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
(d) cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]^{2-}$
35. The number of histidine amino acid nitrogen atoms coordinated to bimetallic active site of oxyhemocyanin, and oxyhemerythrin, respectively, are
(a) 2, 3 and 3,3
(b) 3, 3 and 2,3
(c) 3, 3 and 2,2
(d) 2, 4 and 3,2
36. Identify correct statements for mercury as an environment pollutant.
A. Carbanionic biomethylation converts it to MeHg^{+}
B. Thiol group of cysteine has strong affinity for mercury
C. Mercury containing industrial catalyst release caused Minamata disaster The correct answer is
(a) A and B
(b) A and C
(c) B and C
(d) A, B and C
37. The configurations of carbon atoms C_{3} and C_{4} in D-ribose, respectively, are
(a) R and S
(b) S and R
(c) Riand R
(d) S and S
38. The compound that is antiaromatic is

(I)

(II)

(III)

(IV)
(a) I
(b) II
(c) III
(d) IV
39. The increasing order of pKa yalues of the circled hydrogens in the following compounds is

(II)

(a) I $<$ II $<$ III
(b) I $<$ III $<$ II
(c) II $<$ I $<$ III
(d) II $<$ III $<$ I
40. The decreasing order of basicity of the following compounds is

(I)

(II)

(III)

(IV)
(a) I $>$ II $>$ III $>$ IV
(b) IV $>$ I $>$ II $>$ III
(c) III $>$ II $>$ I $>$ IV
(d) IV $>$ III $>$ II $>$ I
41. In the most stable conformation of neomenthol, stereochemical orientation of the three substituents on the cyclohexane ring are
(a) OH : equatorial; $i-\mathrm{Pr}:$ equatorial and Me : equatorial
(b) OH : axial; $i-\mathrm{Pr}$: equatorial and Me : equatorial
(c) OH : equatorial; i - Pr : equatorial and Me : axial
(d) OH : equatorial; i - Pr : axial and Me : equatorial
42. The absolute configurations of the chiral centres of starting ketone in the following reaction is

(a) $3 \mathrm{R}, 6 \mathrm{~S}$
(b) $3 \mathrm{~S}, 6 \mathrm{~S}$
(c) $3 \mathrm{R}, 6 \mathrm{R}$
(d) $3 \mathrm{~S}, 6 \mathrm{R}$
43. The reaction of 1-bromo-2-fluorobenzene with furan in the presence of one equivalent of Mg gives
(a)

(b)

(c)

44. The product for the following sequence of reactions is
 (iii) $\mathrm{H}_{3} \mathrm{O}^{+}$
(a)

(b)

(c)

(d)

45. The major product formed in the following reaction is

(a)

(b)

(c)

(d)

46. The major product of the following reaction is

(a)

(b)

(c)

(d)

47. The major product of the following reaction is

(a)

(b)

(c)

(d)

48. The cyclic product(s) of the following photochemical reaction is(are)

(a) only cis-1, 2-dimethylcyclopentane
(b) only trans-1, 2-dimethylcyclopentane
(c) a mixture of cis- and trans-1, 2-dimethylcyclopentanes
(d) only 2, 6-dimethylcyclohexanol
49. A compound with molecular formula $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$ shows band at $1770 \mathrm{~cm}^{-1}$ in IR spectrum and peaks at 178, 68, 28 and 22 ppm in ${ }^{13} \mathrm{C}$ NMR spectruinThe correct structure of the compound is
(a)

(b)

(c)

(d)

50. The mass of metastable ion produced due to decomposition of $\mathrm{F}_{1}{ }^{+}$in the following mass fragmentation sequence is
$\underset{\left(M^{+}, 222\right)}{\text { Diethyl }}$, $\longrightarrow \underset{(177)}{\mathrm{F}_{1}^{+}} \longrightarrow \mathrm{F}_{2}^{+}+\mathrm{CO}$
(a) 141.2
(b) 125.4
(c) 45.0
(d) 210.2
51. The ratio of the relative intensities of the carbon signals in the first order ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{CD}_{3} \mathrm{Cl}$ is
(a) $1: 4: 6: 4: 1$
(b) 1:3:3:1
(c) $1: 6: 15: 20: 15: 6: 1$
(d) 1:3:6:7:6:3:1
52. The biosynthetic precursor of abietic acid is
(a) Shikimic acid
(b) Mevalonic acid
(c) Chorismic acid
(d) Cinnamic acid
53. The amino acid constituents of artificial sweetener given below are

(a) D-Glutamic acid and L-phenylglycine
(b) L-Glutamic acid and L-phenylalanine
(c) L-Aspartic acid and L-phenylalanine
(d) L-Aspartic acid and L-tyrosine
54. Bond lengths of homonuclear diatomic molecules can be determined with the help of both
(a) Rotational and vibrational spectroscopy.
(b) Rotational and rotional Raman spectroscopy.
(c) Rotational Raman and electronic spectroscopy.
(d) Vibrational and electronic spectroscopy.
55. If the component of the orbital angular momentum along the molecular axis of a heteronuclear diatomic molecule is non-zero, the rotational-vibrational spectrum will show
(a) P and R branches only.
(b) P and Q branches only.
(c) Q and R branches only.
(d) All the P, Q and R branches.
56. For a particle of mass m confined in a box of length L, assume $\Delta x=L$. Assume further that $\Delta p(\min)=\left\langle p^{2}\right\rangle^{1 / 2}$. Use the uncertainity principle to obtain an estimate of the energy of the particle. The value will be
(a) $\frac{\mathrm{h}^{2}}{\left(8 \mathrm{~mL}^{2}\right)}$
(b) $\frac{\hbar^{2}}{\left(8 \mathrm{~mL}^{2}\right)}$
(c) $\frac{\mathrm{h}^{2}}{\left(32 \mathrm{~mL}^{2}\right)}$
(d) $\frac{\mathrm{h}^{2}}{\left(2 \mathrm{~mL}^{2}\right)}$
57.

Identify the speed distribution functions of Ne, Ar, and Kr with the curves in the figure above
(a) $\mathrm{Ne}-\mathrm{A}, \mathrm{Ar}-\mathrm{B}, \mathrm{Kr}-\mathrm{C}$
(b) Ne-B, Ar-C, $\mathrm{Kr}-\mathrm{A}$
(c) $\mathrm{Ne}-\mathrm{C}, \mathrm{Ar}-\mathrm{B}, \mathrm{Kr}-\mathrm{A}$
(d) $\mathrm{Ne}-\mathrm{C}, \mathrm{Ar}-\mathrm{A}, \mathrm{Kr}-\mathrm{B}$
59. For the cell reaction, $\mathrm{Sn}(\mathrm{s})+\mathrm{Sn}^{4+}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{Sn}^{2+}(\mathrm{aq})$, separate electrode reactions could be written with the respective standard electrode potential data at $25^{\circ} \mathrm{C}$ as

$$
\begin{array}{ll}
\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq}), & \mathrm{E}^{0}=+0.15 \mathrm{~V} \\
\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e} \rightarrow \mathrm{Sn}(\mathrm{~s}), & \mathrm{E}^{0}=-0.14 \mathrm{~V}
\end{array}
$$

When RT/F is given as 25.7 mV , logarithm of the equilibrium constant ($\ell \mathrm{n} \mathrm{K}$) is
(a) 22.6
(b) 226
(c) 2.26
(d) 2.26×10^{-1}
60. Hydrogen is adsorbed on many metal surfaces by dissociation (S represents a surface site):

If the pressure of $\mathrm{H}_{2}(\mathrm{p})$ is small, the fraction of the surface covered by hydrogen is proportional to
(a) p
(b) p^{2}
(c) $\mathrm{p}^{1 / 2}$
(d) $\mathrm{p}^{3 / 2}$
61. For a process in a closed system, temperature is equal to
(a) $\left(\frac{\partial \mathrm{H}}{\partial \mathrm{P}}\right)_{\mathrm{S}}$
(b) $-\left(\frac{\partial \mathrm{A}}{\partial \mathrm{V}}\right)_{\mathrm{T}}$
(c) $\left(\frac{\partial \mathrm{G}}{\partial \mathrm{P}}\right)_{\mathrm{T}}$
(d) $\left(\frac{\partial \mathrm{H}}{\partial \mathrm{S}}\right)_{\mathrm{P}}$
62. The exact differential $d f$ of a state function $f(x, y)$, among the following is
(a) $x d y$
(b) $d x-\frac{x}{y} d y$
(c) $y d x-x d y$
(d) $\frac{1}{y} d x-\frac{x}{y^{2}} d y$
63. The angular momentum operator $L_{z}=-i \hbar \frac{\partial}{\partial \phi}$ has eigen functions of the form $\exp [i A \phi]$. The condition that a full rotation leaves such an eigen function unchanged is satisfies for all the values of A.
(a) $0, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm 1, \pm \frac{4}{3}, \ldots$.
(b) $0, \pm 1, \pm 2, \pm 3, \ldots$
(c) $0, \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \ldots$.
(d) $0, \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots$.
64. X-ray diffraction does not give any structural information for
(a) Metallic solids
(b) Ionic solids
(c) Molecular solids
(d) Amorphous solids
65. A reaction $\mathrm{A}+\mathrm{B}+\mathrm{C} \rightarrow \mathrm{D}$ follows the mechanism
$A+B \rightleftharpoons A B$
$\mathrm{AB}+\mathrm{C} \rightarrow \mathrm{D}$
in which first step remains essentially in equilibritum. If ΔH is the enthalpy change for the first reaction and E_{0} is the activation energy for the second reaction, the activation energy of the overall reaction will be given by
(a) E_{0}
(b) $E_{0}-\Delta H$
(c) $E_{0}+\Delta H$
(d) $E_{0}+2 \Delta H$
66. Wavelength ($\lambda \mathrm{in} \mathrm{nm}$) of the Lymanseries for an one-electron ion is in the range $24 \leq \lambda \leq 30$. The ionization energy of the ion will be closest to $\left(1 \mathrm{~J}=\frac{10^{19}}{1.6} \mathrm{eV}\right)$
(a) 32 eV
(b) 42 eV
(c) 52 eV
(d) 62 eV
67. A sample experiment revealed that $P V C$ formed in the medium has $\left\langle M_{n}\right\rangle=13$, and $\left\langle M_{w}\right\rangle=16$, where $\left\langle M_{n}\right\rangle$ stands for the number average molar mass and $\left\langle M_{w}\right\rangle$ for the weight average molar mass. The variance of M_{n} will then be
(a) 39
(b) 3
(c) 1
(d) 87
68. For an enzyme-substrate reaction, a plot between $\frac{1}{v}$ and $\frac{1}{[S]_{0}}$ yields a slope of 40 s . If the enzyme concentration is $2.5 \mu \mathrm{M}$, then the catalytic efficiency of the enzyme is
(a) $40 \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$
(b) $10^{-4} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$
(c) $10^{7} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$
(d) $10^{4} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$
69. For a polydispersed macromolecular colloid, osmometry gives
(a) Weight-average molecular weight
(b) Number-average molecular weight
(c) Both weight-average and number average molecular weights
(d) Viscosity-average molecular weight
70. 10 ml of 0.02 M NaOH is added to 10 ml of 0.02 M acetic $\operatorname{acid}(\mathrm{pKa}=4.75)$. The pH of the solution will be closest to
(a) 7.0
(b) 8.4
(c) 5.6
(d) 9.6

PART - C

71. Which of the following will result in deviation from Beer's law:
(A) Change in refractive index of medium,
(B) Dissociation of analyte on dilution,
(C) Polychromatic light
(D) Path length of cuvette
(a) A, B and C
(b) B, C and D
(c) A, C and D
(d) A, B and D
72. The gas commonly used in generating plasma in Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES) is
(a) Argon
(b) Carbon dioxide
(c) Nitrous oxide
(d) hydrogen
73. The geometric cross-section (in barn) of a nucleus $\mathrm{A}=125, \mathrm{r}_{\sim}=1.4 \times 10^{-15} \mathrm{~m}$ approximately is
(a) 1.05
(b) 1.54
(c) 2.05
(d) 2.54
74. The number of stereoisomers of trans $-\left[\mathrm{CoCl}_{2}\right.$ (triethylenetetraamine $\left.)\right] \mathrm{Br}$ is
(a) One
(b) Two
(c) Three
(d) Four
75. Under physiological condition, oxygen is binding to deoxyhemoglobin and deoxymyoglobin, the binding curve and its pH dependence, respectively, are
(a) Sigmoidal and pH dependent;
hyperbolic and pH independent
(c) Sigmoidal and pH independent; hyperbolic and pH dependent
(b) Hyperbolic and pH independent;
sigmoidal and pH dependent
(d) Hyperbolic and pH dependent;
sigmoidal and pH independent
76. Match the metalloproteins in column-A with their function in column-B

Column-A

I. Oxyhemocyanin
II. Carbonic anhydrase
III. Cytochrome P_{45}
IV. Carboxy-peptidase A

Column-B

A. hydrolysis of C-terminal peptide bond
B. methylation
C. Conversion of CO_{2} to $\mathrm{H}_{2} \mathrm{CO}_{3}$
D. oxdiation of alkene
E. oxygen stroage
F. oxygen transport

The correct answer is
(a) I - F; II - C; III - D; IV - A
(b) I - E; II - C; III - A; IV - F
(c) I - F; II - B; III - C; IV - A
(d) I - E; II - D; III - C; IV - A
77. $\mathrm{Na}\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]$ reacts with Br_{2} to give A. Reaction of A with LiAlH_{4} results in B . The proton NMR spectrum of B consists of two singlets of relative intensity 5:1. Compounds A and B , respectively, are
(a) $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Br}$ and
$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{H}$
(b) $\left(\eta^{4}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Br}_{2}$ and
$\left(\eta^{4}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{HBr}$
(c) $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Br}$ and
$\left(\eta^{4}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{H})_{2}$
(d) $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Br}$ and
$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{HBr}$
78. The compound that undergoes oxidative addition reaction in presence of H_{2} is
(a) $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{-}$
(b) $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{3}\right]^{-}$
(c) $\left[\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$
(d) $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ReH}\right]$
79. ${ }^{1} \mathrm{H}$ NMR spectrum of free benzene shows a peak at $\sim 7.2 \mathrm{ppm}$. The expected chemical shift (in ppm) of $\mathrm{C}_{6} \mathrm{H}_{6}$ ligand in ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Cr}(\mathrm{CO})_{3}\right]$ and the reason for it, if an, is/are
(a) 4.5 ; disruption of ring current
(b) 9.0 ; inductive effect
(c) 7.2
(d) 2.5 ; combination of inductive effect and disruption of ring current
80. An aqueous solution of $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ complex is pale pink in colour. The probable reasons for it are (A) Presence of ${ }^{6} \mathrm{~A}_{\mathrm{lg}}$ ground state
(B) Disallowed transition by spin selection rule
(C) Presence of ${ }^{2} \mathrm{~T}_{2 g}$ ground state
(D) Charge transfer transition

The correct answer is
(a) A and B
(b) A and C
(c) B and C
(d) C and D
81. The reaction of phosphorus trichloride with phenyllithium in 1:3 molar ratio yields product ' A ', which on further treatment with methyl iodide prodaces ${ }^{\prime}$ '. The reaction of B with ${ }^{n} \mathrm{BuLi}$ gives product ' C '. The products A, B and C , respectively, are
(a) $\left[\mathrm{PPh}_{4}\right] \mathrm{Cl},\left[\mathrm{Ph}_{2} \mathrm{P}=\mathrm{CH}_{2}\right] \mathrm{I}, \mathrm{Ph}_{2} \mathrm{P}\left({ }^{n} \mathrm{Bu}\right)$
(b) $\mathrm{PRh}_{3},\left[\mathrm{Ph}_{3} \mathrm{PI}\right] \mathrm{Me}, \mathrm{Ph}_{2} \mathrm{P}\left({ }^{n} \mathrm{Bu}\right)_{3}$
(c) $\mathrm{PPh}_{3},\left[\mathrm{Ph}_{3} \mathrm{PMe}\right] \mathrm{I}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}^{2}$
(d) $\left[\mathrm{PPh}_{4}\right] \mathrm{Cl},\left[\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}\right] \mathrm{I},\left[\mathrm{Ph}_{3} \mathrm{P}\left({ }^{n} \mathrm{Bu}\right)\right] \mathrm{Li}$
82. The reaction between diphenyldichlorosilane and water in 1:2 molar ratio gives product A which on heating above $100^{\circ} \mathrm{C}$ yields a cyçlic or polymeric product B . The products A and B respectively, are
(a)

(b)
 and $\left(\mathrm{Ph}_{2} \mathrm{SiO}\right)_{\mathrm{n}}(\mathrm{n}=3,4$, or $\infty)$
(c)
 and $\quad\left(\mathrm{Ph}_{2} \mathrm{SiO}\right)_{\mathrm{n}}(\mathrm{n}=3,4$, or $\infty)$
(d)
 and

83. According to Wade's rule, anion $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}{ }^{-}$adopts
(a) closo-structure
(b) nido-structure
(c) arachno-sturcture
(d) hypho-structure
84. The final product in the reaction of $\left[\mathrm{Cp}_{2} \mathrm{ThH}\right]$ with CO in an equimolar ratio is
(a)

(b)

(c)

(d)

85. Hindered β - diketonates like $\mathrm{dpmH}(\mathrm{dpmH}=$ dipivaloylmethane) are used for the separation of lanthanides because complexes formed with dpmH can be separated by
(a) Gel permeantion chromatography
(b) Gas chromatography
(c) Gel filtration chromatography
(d) Ion exchange chromatography
86. Base hydrolysis of $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$ is an overall second order reaction, whereas that of $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ is of first order. The rates depend in both cases solely on the concentrations of the cobalt complex. This may be due to
(A) Presence of ionizable proton in $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$ but not in $\left[\mathrm{CO}(\mathrm{CN})_{6}\right]^{3-}$
(B) $\mathrm{S}_{\mathrm{N}}{ }^{1}$ CB mechanism in the case of $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$ only
(C) $\mathrm{S}_{\mathrm{N}}{ }^{1}$ CB mechanism in the case of $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ only
(D) $\mathrm{S}_{\mathrm{N}}{ }^{1}{ }_{C B}$ mechanism in both the complexes

Correct explanation(s) is/are
(a) A and B
(b) A and C
(c) B only
(d) A and D
87. A borane (X) is reacted with ammoniato give a salt of borohydride (Y). The ${ }^{11} \mathrm{~B}$ NMR spectrum of Y consists of a triplet and a quintet. The borane X is
(a) $\mathrm{B}_{2} \mathrm{H}_{6}$
(b) $\mathrm{B}_{3} \mathrm{H}_{9}$ • C
(c) $\mathrm{B}_{4} \mathrm{H}_{8}$
(d) $\mathrm{B}_{5} \mathrm{H}_{9}$
88. The main products of the reaction of equimolar quantities of XeF_{6} with NaNO_{3} are
(a) $\mathrm{XeOF}_{4}, \mathrm{NaF}$ and $\mathrm{NO}_{2} \mathrm{~F}$
(b) $\mathrm{XeO}_{2} \mathrm{~F}_{2}, \mathrm{NaF}$, NOF and F_{2}
(c) $\mathrm{XeOF}_{4}, \mathrm{NaNO}_{2}$ and F_{2}
(d) $\mathrm{XeF}_{4}, \mathrm{NaNO}_{2}$ and $\mathrm{F}_{2} \mathrm{O}$
89. The spin-only magnetic moment and the spectroscopic ground state term symbol of manganese center in $\left[\mathrm{MnF}_{6}\right]^{3-}$ ion respectively, are
(a) 4.9 BM and ${ }^{5} \mathrm{D}$
(b) 4.9 BM and ${ }^{4} \mathrm{~F}$
(c) 3.9 BM and ${ }^{3} \mathrm{D}$
(d) 4.9 BM and ${ }^{3} \mathrm{~F}$
90. The three dimensional structure of compound $\left[\mathrm{Co}\left(\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{OH})_{2}\right)_{3}\right] \mathrm{Br}_{6}$ has
(a) Twelve $\mathrm{Co}-\mathrm{O}$ and twelve $\mathrm{Co}-\mathrm{N}$ bonds
(b) Ten $\mathrm{Co}-\mathrm{O}$ and ten $\mathrm{Co}-\mathrm{N}$ bonds
(c) Fourteen $\mathrm{Co}-\mathrm{O}$ and ten $\mathrm{Co}-\mathrm{N}$ bonds
(d) Twelve $\mathrm{Co}-\mathrm{O}$ and ten $\mathrm{Co}-\mathrm{N}$ bonds
91. The spin-only $\left(\mu_{\mathrm{S}}\right)$ and spin plus orbital $\left(\mu_{\mathrm{S}+\mathrm{L}}\right)$ magnetic moments of $\left[\mathrm{CrCl}_{6}\right]^{3-}$ are
(a) 3.87 BM and 5.20 BM
(b) 2.84 BM and 5.20 BM
(c) 3.87 BM and 6.34 BM
(d) 2.84 BM and 6.34 BM
92. Complexes $\mathrm{HM}(\mathrm{CO})_{5}$ and $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{M}^{\prime}(\mathrm{CO})_{3}\right]_{2}$ obey the 18 -electron rule. Identify M and M^{\prime} and their ${ }^{1} \mathrm{H}$ NMR chemical shifts relative to TMS.
(a) $\mathrm{M}=\mathrm{Mn},-7.5 ; \quad \mathrm{M}^{\prime}=\mathrm{Cr}, 4.10$
(b) $\mathrm{M}=\mathrm{Cr}, 4.10 ; \quad \mathrm{M}^{\prime}=\mathrm{Mn},-7.5$
(c) $\mathrm{M}=\mathrm{V},-7.5 ; \quad \mathrm{M}^{\prime}=\mathrm{Cr}, 4.10$
(d) $\mathrm{M}=\mathrm{Mn}, 10.22 ; \quad \mathrm{M}^{\prime}=\mathrm{Fe}, 2.80$
93. 12-Crown-4 binds with the alkali metal ions in the following order :
$\mathrm{Li}^{+} \gg \mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Cs}^{+}$. It is due to the
(a) Right size of cation
(b) Change in entropy being positive
(c) Conformational flexibility of crown ether
(d) Hydrophobicity of crown ether
94. The correct schematic molecular energy diagram for SF_{6} molecule is
(a)

(b) E

(c)

(d)

95. Gel permeation chromatography can be used to separate which of the following
(A) Lanthanides
(B) Alkaline earths
(C) Fatty acids
(D) Low molecular weight peptides

The correct answer is
(a) A and B
(b) B and C
(c) C and D
(d) A and D
96. The major product formed in the following reaction is

(a)

(b)

(c)

HO
(d)

97. The major product formed in the following transformation is

$\xrightarrow[\text { (ii) } \mathrm{PhCHO}]{\text { (i) } \mathrm{Bu}_{2} \mathrm{BOTf}, \mathrm{i}-\mathrm{Pr}_{2} \mathrm{NEt}}$
(a)

(b)

(c)

(d)

98. The product of B in the following reaction sequence is

99. The major product of the following reaction is

(a)

(b)

(c)

(d)

100. The major product of the following reactions is

(a)

(b)

(c)

(d)

101. The major product for the following reactions is

(a)

(b)

(c)

(d)

102. The products A and B in the following reaction sequence are

(B) $\xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {(i) } \mathrm{NaOEt}}$
(a) A :

B :

(b) A :

B :

(c) A :

B :

(d) A :

B :

103. The products A and B in the following reaction sequence are

(a) A :

(b) A :

(c) A :

(d) A :

104. The correct combinations the reactions and the reagents are

Reactions
(A)

 $\mathrm{O}_{2} \mathrm{EtNC}=\mathrm{NCO}_{2} \mathrm{Et}$
(B)

(Q) $\mathrm{POCl}_{3}, \mathrm{Et}_{2} \mathrm{~N}$
(C)

$+\mathrm{t}-\mathrm{BuOH}$

$\sim \mathrm{COOt} \mathrm{CB}$
(R) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(a) A-P, B-Q, C-R
(b) A-Q, B-R, C-P
(c) A-P, B-R, C-Q
(d) A-Q, B-P, C-R
105. The products A and B in the following reaction sequence are

(a) A :

B:

(b) A :

B:

(c)

(d) A:
B:

B:

106. The major product of the following reaction is

(iii) $\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}$
(iv) H^{+}
(a)

(b)

(c)

(d)

107. The major product of the following reaction is

(a)

(b)

(c)

(d)

108. The products A and B in the following reaction sequence are

(a) A :

B :

(b) \mathbf{A} :

B :

(c)

B :

(d) \mathbf{A} :

B :

109. The major product formed in the following reaction sequence is
(i) $\mathrm{EtCOCl}, \mathrm{Et}_{3} \mathrm{~N}^{-}$
(ii) $\mathrm{LDA}, \mathrm{THF},-78^{\circ} \mathrm{C}, \mathrm{TMSCl}$

(iii) Δ
(v) $\mathrm{CH}_{2} \mathrm{~N}_{2}$
(a)

(b)

(c)

(d)

110. In the following reaction sequence, the structures of A and B are, respectively,

(a)

(b)

(c)

(d)

111. In the following reaction sequence, the structure of the product is

(a)

(b)

(c)

(d)

112. The correct combination of the following reactions and their ρ values is

Entry	Reaction	Entry	ρ value
A	$\mathrm{ArNH}_{2}+\mathrm{PhCOCl}$ in benzene	P	+2.01
B	$\begin{aligned} & \mathrm{ArO}^{-}+\mathrm{EtI}^{2} \\ & \text { in EtOH } \end{aligned}$	Q-0.99	
C	$\mathrm{ArCO}_{2} \mathrm{Et}+\mathrm{aq}$ NaOH in EtOH	R	-2.69
(a) A-P ; B-R ; C-P	(b) A-R ; B-Q ; C-P	S (c) A-R ; B-P ; C-Q	$+0.78$ (d) A-Q ; B-R ; C-S

113. The following reactions gives a product (racemic) which exhibits the following NMR data :
${ }^{1} \mathrm{H}$ NMR : $\delta 2.67(2 \mathrm{H}, \mathrm{s}), 5.60(2 \mathrm{H}, \mathrm{s})$
ppm; ${ }^{13} \mathrm{C}$ NMR : $\delta 170.3,129.0,105.0,25.4 \mathrm{ppm}$
The structure of the product (racemic) is

(a)

(b)

(c)

114. The reactive intermediate and the product formed in the following reaction are

(a) Free radical and 4-iodomethyloxepan-2-one
(b) Free radical and 5-iodooxacan-2-one
(c) Carbene and 3-oxabicyclo[5.1.0]octane-2-one
(d) Carbene and (E)-5-iodopent-3-en-1-yl acetate

(a)

(b)

(c)

(d)

115. An organic compound having molecular formula $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$ exhibits the following spectral data: IR : 3400 (br), $1600 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR : $\delta 1.85(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 3.8(3 \mathrm{H}, \mathrm{s}), 5.0\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable $), 6.0(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=18,6 \mathrm{~Hz})$, $6.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=18 \mathrm{~Hz}), 6.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 6.8(1 \mathrm{H}, \mathrm{s}), 6.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}) \mathrm{ppm}$;
${ }^{13}$ C NMR : $\delta 146.5,144.0,131.0,130.5,123.0,119.0,114.0,108.0,55.0,18.0 \mathrm{ppm}$.
The structure of the compound is
(a)

(b)

(c)

(d)

116. In the following reaction sequence, the reagents X and Y are, respectively,

(a) $\mathrm{X}=\mathrm{PhSO}_{2} \mathrm{H}, \mathrm{BF}_{3} \mathrm{OEt}_{2}$ and $\mathrm{Y}=\mathrm{CH}_{2}=\mathrm{CHCOOEt}, \mathrm{BF}_{3} \mathrm{OEt}_{2}$
(b) $\mathrm{X}=1$. PhSH, PTSA, $2-\mathrm{CPBA}$ and $\mathrm{Y}=\mathrm{CH}_{2}=\mathrm{CHCOOEt}, \mathrm{BF}_{3} \mathrm{OEt}_{2}$
(c) $\mathrm{X}=\mathrm{PhSO}_{3} \mathrm{H}, \mathrm{BF}_{3} \mathrm{EEt}_{2}$ and $\mathrm{Y}=\mathrm{LDA}, \mathrm{CH}_{2}=\mathrm{CHCOOEt}$
(d) $\mathrm{X}=1$. PhSH, PTSA; 2. m-CPBA and $\mathrm{Y}=\mathrm{LDA}, \mathrm{CH}_{2}=\mathrm{CHCOOEt}$
117. The major product of the following reaction is

(a)

(b)

(c)

(d)

118. The major product of the following reaction is

(a)

(b)

(c)

(d)

119. The major products A and B formed in the following reaction sequence are

(a) \mathbf{A} :

B :

(b)

(c) \mathbf{A} :

B :

(d) \mathbf{A} :

B :

121. For a gaseous reaction, $2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow$ Non-linear T.S. $\rightarrow 2 \mathrm{NOCl}$, the pre-exponential factor in the rate constant is proportional to
(a) $\mathrm{T}^{1 / 2}$
(b) $\mathrm{T}^{-1 / 2}$
(c) $\mathrm{T}^{-5 / 2}$
(d) $\mathrm{T}^{-7 / 2}$
122. Species A undergoes a unimolecular reaction as follows:

$$
\begin{gathered}
A+A \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} A^{*}+A \\
A^{*} \xrightarrow[k_{2}]{\longrightarrow} P
\end{gathered}
$$

For this reaction, the first order rate constant at high pressure is k_{∞}. The first order rate constant becomes $\frac{k_{\infty}}{2}$ when pressure of A is $[A]_{1 / 2}$.

The value of k_{1} will be
(a) $\frac{k_{\infty}}{[A]_{1 / 2}}$
(b) $k_{\infty}[A]_{1 / 2}$
(c) $k_{\infty}-[A]_{42}$
(d) $\frac{[A]_{1 / 2}}{k_{\infty}}$
123. The low and high temperature limits of vibrational partition function are $\left(\theta=\frac{h v}{k}\right)$
(a) $e^{-\theta / T}$ and $\frac{T}{\theta} e^{-\theta / T}$
(b) $e^{-\theta / 2 T}$ and $\frac{T}{\theta} e^{-\theta / 2 T}$
(c) $e^{-\theta / 2 T}$ and $\frac{T}{\theta} e^{-\theta / T}$
(d) $e^{-\theta / 2 T}$ and $\frac{\theta}{T} e^{-\theta / 2 T}$
124. The probability of finding the harmonic oscillator in the energy level $n=1$ is (neglect zero point energy and assume $h \nu=k_{B} T$)
(a) e
(b) e^{2}
(c) $1-e^{-2}$
(d) $e^{-2}(e-1)$
125. A particle in a 1-dimensional box of length L is perturbed by a delta function potential, $\delta(x-L / 2)$, in the middle of the box. The first order energy correction to the ground state will be
[Hint: $\left.\int_{+\infty}^{-\infty} f(x) \delta(x-a) d x=f(a)\right]$
(a) 0
(b) 1
(c) $L / 2$
(d) $2 / L$
126. The operators $S_{ \pm}$are defined by $S_{ \pm}=S_{x} \pm i S_{y}$, where S_{x} and S_{y} are components of the spin angular momentum operator. The commutator $\left[S_{z}, S_{+}\right.$] is
(a) $\hbar S_{+}$
(b) $\hbar S_{-}$
(c) $-\hbar S_{+}$
(d) $-\hbar S_{-}$
127. A quantum particle with fixed initial energy $E_{0}<V$ is allowed to strike the following four barriers separately. The transmission probability is maximum in
(a)

(b)

(c)

(d)

128. Given the following two relations, $\quad x_{1} d \mu_{1}+x_{2} d \mu_{2}=0 \quad$ (A)

$$
\begin{equation*}
\text { and } \quad x_{1} d \bar{V}_{1}+x_{2} d \bar{V}_{2}=0 \tag{B}
\end{equation*}
$$

for a binary liquid mixture at constant temperature and pressure the true statement is that,
(a) Both the relations are correct
(b) Relation A is correct, but B is not
(c) Relation B is correct, but A is not
(d) Both the relations are incorrect, except for very dilute solutions.
129. If the bond length of a heteronuclear diatomicmolecule is greater in the upper vibrational state, the gap between the successive absorption Tines of P-branch
(a) Increases non-linearly
(b) Decreases non-linearly
(c) Increases linearly
(d) Decreases linearly
130. EPR spectrum of a free radicat containing nuclei with non-zero nuclear spin is obtaining if the following selection rules are observed:
(a) $\Delta m_{s}=0, \quad \Delta m_{1}=0$
(b) $\Delta m_{s}= \pm 1, \quad \Delta m_{1}=0$
(c) $\Delta m_{s}= \pm 1$,
$\Delta m_{1}=+1$
(d) $\Delta m_{s}=0, \quad \Delta m_{1}= \pm 1$
131. At high pressure, the fugacity coefficient of a real gas is greater than one, because
(a) Attractive term overweighs the repulsive term
(b) Repulsive term overweighs the attractive term
(c) Repulsive term is equal to the attractive term
(d) The system is independent of both the attractive and repulsive terms
132. If $\mathrm{D}_{0}(\mathrm{~A})$ and $\mathrm{I}(\mathrm{A})$ refer respectively to the dissociation energy and ionization potential of A (where A is either $\mathrm{H}, \mathrm{H}_{2}$, or H_{2}^{+}species), the correct relation among the following is
(a) $\mathrm{D}_{0}\left(\mathrm{H}_{2}\right)=\mathrm{D}_{0}\left(\mathrm{H}_{2}^{+}\right)+\mathrm{I}(\mathrm{H})-\mathrm{I}\left(\mathrm{H}_{2}\right)$
(b) $\mathrm{D}_{0}\left(\mathrm{H}_{2}\right)=\mathrm{D}_{0}\left(\mathrm{H}_{2}^{+}\right)-\mathrm{I}(\mathrm{H})+\mathrm{I}\left(\mathrm{H}_{2}\right)$
(c) $\mathrm{D}_{0}\left(\mathrm{H}_{2}^{+}\right)=\mathrm{D}_{0}\left(\mathrm{H}_{2}\right)+\mathrm{I}(\mathrm{H})+\mathrm{I}\left(\mathrm{H}_{2}\right)$
(d) $\mathrm{D}_{0}\left(\mathrm{H}_{2}^{+}\right)=\mathrm{D}_{0}\left(\mathrm{H}_{2}\right)-\mathrm{I}(\mathrm{H})-\mathrm{I}\left(\mathrm{H}_{2}\right)$
133. The character table of $C_{2 v}$ point group is given below. In cis-butadiene molecule the vibrational modes belonging to A_{2} irreducible representation are $I R$ inactive. The remaining $I R$ active modes are

$C_{2 v}$	E	C_{2}	σ_{v}	σ_{v}^{\prime}	
A_{1}	1	1	1	1	z, x^{2}, y^{2}, z
A_{2}	1	1	-1	-1	$R_{z}, x y$
B_{1}	1	-1	1	-1	$x, R_{y}, x z$
B_{2}	1	-1	-1	1	$y, R_{x}, y z$

(a) $7 A_{1}+5 B_{1}+8 B_{2}$
(b) $9 A_{1}+4 B_{1}+7 B_{2}$
(c) $7 A_{1}+3 B_{1}+7 B_{2}$
(d) $9 A_{1}+3 B_{1}+8 B_{2}$
134. The product $\sigma^{x y} . S_{4}^{z}$ (S_{4}^{z} is the four fold improper axis o rotation around the z-axis, and $\sigma^{x y}$ is the reflection in the $x y$ plane) is
(a) C_{4}^{2}
(b) $C_{4}^{z} \cdot i$
(c) C_{4}^{y}
(d) C_{2}^{2}
135. A solid consisting of only X -atoms has a close-packed structure with X-X distance of 160 pm . Assuming it to be a closed packed structure of hard spheres with radius equal to half of the $\mathrm{X}-\mathrm{X}$ bond length, the number of atoms in $1 \mathrm{~cm}^{3}$ would be
(a) 6.023×10^{27}
(b) 3.45×10^{23}
(c) 6.02×10^{2}
(d) 3.8×10^{21}
136. Fuel cells provide clean electrical energy to a variety of applications including automobiles and stationary power sources. Normally hydrogen combines with oxygen to give electrical energy and water. If we use butane instead of hydrogen at 1.0 bar and 298 K , the following reaction occurs :
$\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+\frac{13}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
If the change in the Gibbs free energy of this reaction is $2746.06 \mathrm{~kJ} \mathrm{~mol}^{-1}$, involving 26 electrons, its open circuit voltage is
(a) 1.55 V
(b) 1.09 V
(c) 3.15 V
(d) 2.06 V
137. The fraction of groups condensed at time t in any stepwise condensation polymerization (overall second order) reaction is
(a) $1+k t[A]_{0}$
(b) $\frac{1}{1+k t[A]_{0}}$
(c) $\frac{k t[A]_{0}}{1+k t[A]_{0}}$
(d) $\frac{1+k t[A]_{0}}{k t[A]_{0}}$
138. The configuration $[\mathrm{Ne}] 2 p^{1} 3 p^{1}$ has a ${ }^{3} \mathrm{D}$ term. Its levels are
(a) ${ }^{3} \mathrm{D}_{3 / 2},{ }^{3} \mathrm{D}_{1 / 2}$
(b) ${ }^{3} \mathrm{D}_{5 / 2},{ }^{3} \mathrm{D}_{3 / 2},{ }^{3} \mathrm{D}_{1 / 2}$
(c) ${ }^{3} \mathrm{D}_{3},{ }^{3} \mathrm{D}_{2},{ }^{3} \mathrm{D}_{1}$
(d) ${ }^{3} \mathrm{D}_{3},{ }^{3} \mathrm{D}_{2},{ }^{3} \mathrm{D}_{1},{ }^{3} \mathrm{D}_{0}$
139. For some one-electron system with $l=0$ and $m=0$, the functions $N_{0} e^{-\sigma}$ and $N_{1}(2-\sigma) e^{-\sigma / 2}$ refer respectively to the ground $\left(E_{0}\right)$ and first excited $\left(E_{1}\right)$ energy levels. If a variational wave function $N_{2}(3-\sigma) e^{-\sigma}$ yields an average energy \bar{E}, it will satisfy
(a) $\bar{E} \geq 0$
(b) $0 \leq \bar{E} \leq E_{0}$
(c) $\bar{E} \geq E_{1}$
(d) $E_{0} \leq \bar{E} \leq E_{1}$
140. The number of microstates that are possible, when two particles are distributed in four states such that the resulting wave functions are antisymmetric with respect to exchange of the particles, is
(a) 16
(b) 12
(c) 8
(d) 6
141. A Slater determinant corresponding to the ionic part of the ground state valence bond wave function of H_{2} molecule is $\left(1 s_{a} \alpha, 1 s_{a} \beta, 1 s_{b} \alpha, 1 s_{b} \beta\right.$ are atomic spin-orbitals of hydrogen atoms a and b of the hydrogen molecule)
(a) $\left|\begin{array}{ll}1 s_{a} \alpha(1) & 1 s_{a} \beta(1) \\ 1 s_{a} \alpha(2) & 1 s_{a} \beta(2)\end{array}\right|$
(b) $\left|\begin{array}{ll}1 s_{a} \alpha(1) & 1 s_{b} \beta(1) \\ 1 s_{a} \alpha(2) & 1 s_{b} \beta(2)\end{array}\right|$
(c) $\left|\begin{array}{ll}1 s_{a} \alpha(1) & 1 s_{b} \alpha(1) \\ 1 s_{a} \alpha(2) & 1 s_{b} \alpha(2)\end{array}\right|$
(d) $\left|\begin{array}{ll}1 s_{a} \alpha(1) & 1 s_{b} \beta(1) \\ 1 s_{a} \alpha(1) & 1 s_{b} \beta(2)\end{array}\right|$
142. When $T \rightarrow \infty$, value of the single-particle partition function will be (given : degeneracy of level $j=$ g_{j})
(a) 1
(b) g_{0}
(c) $\Sigma_{j} g_{j}$

143. The rate constant for a reaction $A^{1+}+B^{n+} \rightarrow P$ is measured intwo different aqueous solutions of ionic strengths 0.01 M and 0.04 M . If $\log \frac{k_{0.04}}{k_{0.01}}=0.3$, the charge n on B is closest to
(a) 1
(b) 2
(c) 3
(d) 6
144. According to Hückel theory, the π electron charge on the central carbon atom in propenyl cation $\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2}\right)^{+}$is (in units of electronic charge)
(a) $\frac{1}{2}$
(b) $\frac{1}{\sqrt{2}}$
(c) 1
(d) 2
145. Among the following figures the variations of mass adsorbs with pressure for a monolayer and a multilayer are represented by

(a) A and C respectively
(c) C and A respectively

(b) A and B respectively
(d) B and A respectively

