Section-A

1. This question consists of TWENTY FIVE sub-questions (1.1 to 1.25) of ONE mark each. For each of these sub-questions, four possible answers (a,b, cand d) are given, out of which only one is correct.
[$25 \times 1=25$]
1.1. Icosahedral structure is generally exhibited by
(a) C
(b) Si
(c) Ge
(d) B
1.2. The hybrid orbitals used by bromine atom in BrF_{3} are
(a) sp^{2}
(b) sp^{3}
(c) $\mathrm{sp}^{3} \mathrm{~d}$
(d) $\mathrm{sp}^{3} \mathrm{~d}^{2}$
1.3. The metal ion present in carbonic anhydrase is
(a) Mn
(b) Zn
(c) Cu
(d) Fe
1.4. The most acidic aqua ion is
(a) $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}$
(b) $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}$
(c) $\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}$
(d) $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}$
1.5. Which one of the following metal fragments, $\mathrm{d}^{\mathrm{n}}-\mathrm{ML}_{\mathrm{m}}$, is isolobal with CH ?
(a) $\mathrm{d}^{7}-\mathrm{ML}_{5}$
(b) $\mathrm{d}^{8}-\mathrm{ML}_{4}$
(c) $\mathrm{d}^{9}-\mathrm{ML}_{3}$
(d) $\mathrm{d}^{5}-\mathrm{ML}_{6}$
1.6. The softest acid amongst the following is:
(a) Al^{3+}
(b) Li^{+}
(c) Ca^{2+}
(d) Ag^{+}
1.7. The chromium (III) species formed soon after electron transfer between IrCl_{6}^{2-} and $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}$ is:
(a) $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}$
(b) $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}^{2+}$
(c) CrCl_{6}^{3}
(d) $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}$
1.8. The strongest reducing ion of the following is
(a) U^{3+}
(b) Am^{3+}
(c) Cm^{3+}
(d) Cf^{3+}
1.9. The first ionization potential of $\mathrm{Mg}, \mathrm{A}, \mathrm{P}$ and S follows the order
(a) $\mathrm{Mg}<\mathrm{Al}<\mathrm{P}<\mathrm{S}$
(b) $\mathrm{Al}<\mathrm{Mg}<\mathrm{P}<\mathrm{S}$
(c) $\mathrm{Al}<\mathrm{Mg}<\mathrm{S}<\mathrm{P}$
(d) $\mathrm{Mg}<\mathrm{Al}<\mathrm{S}<\mathrm{P}$
1.10. As per the uncertainty principle, $\Delta x \cdot \Delta p_{y}=$
(a) h
(b) $h / 2 \pi$
(c) λ
(d) zero
1.11. The second lower state of particle in a cubic box is
(a) non degenerate
(b) doubly degenerate
(c) triply degenerate
(d) six-fold degenerate
1.12. In comparision to the frequency of the EPR transition, the NMR transition frequency is
(a) much higher
(b) much lower
(c) almost same
(d) none of these
1.13. The symmetry point group of the BF_{3} molecule is:
(a) $\mathrm{C}_{3 \mathrm{v}}$
(b) $\mathrm{D}_{3 \mathrm{~h}}$
(c) $\mathrm{C}_{2 \mathrm{v}}$
(d) $\mathrm{D}_{2 \mathrm{~h}}$
1.14. For an irreversible adiabatic expansion of a perfect gas from volume V_{i} to V_{f} the change in entropy of the gas is:
(a) $n R \ln \left(V_{f} / V_{i}\right)$
(b) Zero
(c) less than zero
(d) greater than zero
1.15. For the cell $\mathrm{Ag}(\mathrm{s})\left|\mathrm{AgCl}(\mathrm{satd}), \mathrm{NaCl}\left(\mathrm{aq}, \mathrm{m}_{1}\right)\right| \mathrm{NaCl}\left(\mathrm{aq}, \mathrm{m}_{2}\right), \mathrm{AgCl}(\mathrm{satd}) \mid \mathrm{Ag}(\mathrm{s})$ where m_{1} and m_{2} are different molalities $\left(\mathrm{m}_{1}>\mathrm{m}_{2}\right)$, the standard cell potential is:
(a) $-\mathrm{RT} \ln \left(\mathrm{m}_{1} / \mathrm{m}_{2}\right)$
(b) Zero
(c) $-\mathrm{RT} \ln \left(\mathrm{a}_{1} / \mathrm{a}_{2}\right)$
(d) $-F R T \ln \left(a_{1}\right)$
1.16. For an ideal dilute solution, which one of the following statements is correct? (γ and x are activity coefficient and mole fraction respectively)
(a) $\gamma($ solvent $) \rightarrow 0$ as $\mathrm{x}($ solvent $) \rightarrow 1$
(b) $\gamma($ solvent $) \rightarrow 1$ as $\mathrm{x}($ solvent $) \rightarrow 1$
(c) $\gamma($ solvent $) \rightarrow 1$ as $\times($ solvent $) \rightarrow 1$
(d) $\gamma($ solvent $) \rightarrow 0$ as x (solvent) $\rightarrow 1$
1.17. For the reaction: $\mathrm{Br}_{2}(\mathrm{~g})+\mathrm{BF}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BrF}_{3}(\mathrm{~g})$, the equilibrium constant at 2000 K and 1.0 bar is 5.25 . When the pressure is increased by 8 -fold, the equilibrium constant.
(a) Increase by a factor of 1.86
(b) Decreases by a factor of 1.86
(c) Remains same
(d) Increases by a factor of 8
1.18. 2-Phenyl ethanol may be prepared by the reaction of phenyl magnesium bromide with
(a) HCHO
(b) $\mathrm{CH}_{3} \mathrm{CHO}$
(c) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(d) $\stackrel{0}{\Delta}$
1.19. o-Chlorotoluene reacts with sodamide in liquid ammonia to give o-toluidine, and m-toluidine. This reaction proceeds through an intermediate
(a)

(b)

(c)

1.20. The number of signals observed in ${ }^{1} \mathrm{H}$ NMR spectrum of 3 , 5 -dibfomotoluene is:
(a) 3
(b) 4
(c) 2
(d) 6
1.21. Which one of the following molecules will have $\mathrm{n} \rightarrow \pi^{\text {米transition at the longest wavelength ? }}$
(a) HCHO
(b) $\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$
(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COC}_{6} \mathrm{H}_{5}$
(d) $\mathrm{CH}_{3} \mathrm{COC}_{6} \mathrm{H}_{5}$
1.22. The reaction of cyclooctyne with HgSO_{4} in the presence of aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives
(a)

(b)

(c)

(d)

1.23. Pyrolysis of
 would be
(a) A mixture of $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CD}_{3}$ and $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CD}_{2}$
(b) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CD}_{2}$
(c) $\mathrm{Me}_{2} \mathrm{~N}^{+}=\mathrm{C}(\mathrm{CD})_{3}\left(\mathrm{CH}_{3}\right)$
(d) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CD}_{3}$
1.24. Amongst the following amino acids, the (R)-enantiomer is represented by
(a)

(b)

(c)

(d)

1.25. Arrange the following halides in the decreasing order of SN^{1} reactivity

(I)
(II)
(III)
(a) I $>$ II $>$ III
(b) II $>$ I $>$ III
(c) II $>$ III $>$ I
(d) III $>$ II $>$ I
2. This question consists of TWENTY FIVE sub-questions (2.1 to 2.25) of ONE mark each. For each of these sub-questions, four possible answers (a, b, c and d) are given, out of which only one is correct.
$[25 \times 2=50]$
2.1. The volume of $1 \mathrm{~N} \mathrm{KMnO}_{4}$ required to reach equivalence point in the titration with 0.01 mole of ferrous oxalate dissolved in dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ is
(a) $3 \mathrm{~cm}^{3}$
(b) $30 \mathrm{~cm}^{3}$
(c) $10 \mathrm{~cm}^{3}$
(d) $20 \mathrm{~cm}^{3}$
2.2. The number of signals observed in ${ }^{1} \mathrm{H}$ NMR spectrum of 3,5 -dibromotoluene is:
(a) 3
(b) 4
(c) 2
(d) 6
2.3. Among the following, the paramagnetic species among the following is:
(a) B_{2}
(b) C_{2}
(c) O_{2}^{2-}
(d) CO
2.4. The purple colour of iodine vapours is due to
(a) d-d transition
(b) $\pi-\sigma^{*}$ transition
(c) charge - transfer transition
(d) $\pi^{*}-\sigma^{*}$ transition
2.5. Amongst the following, the strongest oxidizing anion is:
(a) CrO_{4}^{2-}
(b) VO_{4}^{3-}
(c) FeO^{2}
(d) MnO_{4}^{2-}
2.6. ${ }^{19} \mathrm{~F}$ NMR spectrum of meriodional isomer of octahedral $\mathrm{RhCl}_{3} \mathrm{~F}_{3}$ complex, $\left[{ }^{103} \mathrm{Rh}(\mathrm{I}=1 / 2) ;{ }^{19} \mathrm{~F}(\mathrm{I}=1 / 2)\right.$ assuming $J_{R h-F}>J_{F-F}$, will show
(a) one doublet
(b) two doublets and one triplet
(c) two doublets and two triplets
(d) one singlet and two triplets
2.7. Which one of the following will show closo structure?
(a) $\mathrm{B}_{5} \mathrm{H}_{9}$
(b) $\mathrm{B}_{12} \mathrm{H}_{12}^{2+}$
(c) $\mathrm{B}_{4} \mathrm{H}_{10}$
(d) $\mathrm{B}_{5} \mathrm{H}_{11}$
2.8. The correct order of energy level of d-orbitals in ferrocene is:
(a) $d x^{2}-y^{2}, d x y<d z z^{2}<d x z, d y z$
(b) $\mathrm{dz}^{2}<\mathrm{dxz}, \mathrm{dyz}<\mathrm{dx}^{2}-\mathrm{y}^{2}$, dxy
(c) $\mathrm{dx}^{2}-\mathrm{y}^{2}, \mathrm{dxy}<\mathrm{dxz}, \mathrm{dyz}<\mathrm{dz}^{2}$
(d) dyz, dxz $<\mathrm{dx}^{2}-\mathrm{y}^{2}, \mathrm{dxy}<\mathrm{dz}^{2}$
2.9. Two moles of a monoatomic perfect gas initially at 4.0 bar and $47^{\circ} \mathrm{C}$ undergoes reversible expansion in an insulated container. The temperature at which the pressure reduces to 3.0 bar is
(a) 200 K
(b) 285 K
(c) 310 K
(d) 320 K
2.10. The mean ionic activity coefficient of $0.0005 \mathrm{~mol} \mathrm{~kg}^{-1} \mathrm{CaCl}_{2}$ in water at $25^{\circ} \mathrm{C}$ is:
(a) 0.98
(b) 0.67
(c) 0.81
(d) 0.91
2.11. For the cell : $\mathrm{Cd}(\mathrm{Hg})\left|\mathrm{CdSO}_{4}(8 / 3) \mathrm{H}_{2} \mathrm{O}(\mathrm{s})\right| \mathrm{CdSO}_{4}(\mathrm{aq}$, satd. $)\left|\mathrm{Hg}_{2} \mathrm{SO}_{4}(\mathrm{~s})\right| \mathrm{Hg}$ The temperature dependence of emf in Volts is given by
$\mathrm{B}=1.0185-4.05 \times 10^{-5}(\mathrm{~T}-293)-9.5 \times 10^{-7}(\mathrm{~T}-293)^{2}$
The change in entropy at $25^{\circ} \mathrm{C}$ for the cell reaction is
(a) $-253 \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(b) $9.65 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(c) $8.3 \times 10^{-4} \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(d) zero
2.12. Two separate bulbs contain ideal gases A and B respectively. The density of gas A is twice that of gas B and molecular weight of gas A is half of that of gas B. The ratio of pressure of gas A to that of gas B is
(a) 3
(b) 6
(c) 4
(d) 1
2.13. Choose the correct criterion of spontaneity in terms of the properties of the system alone.
(a) $(\mathrm{dS})_{U, \mathrm{~V}}>0$
(b) $(\mathrm{dS})_{\mathrm{T}, \mathrm{P}}>0$
(c) $(\mathrm{dS})_{\mathrm{H}, \mathrm{P}}<0$
(d) $(\mathrm{dG})_{\mathrm{T}, \mathrm{V}}<0$
2.14. Compared to $\mathrm{C}_{2} \mathrm{H}_{6}$, the value of vander waal's constants ' a ' and ' b ' for He will be
(a) both will be smaller
(b) 'a' will be larger but ' b ' will be smaller
(c) ' b ' will be larger but ' a ' will be smaller
(d) both will be larger
2.15. The number of hyperfine components observed in the electronic transition ${ }^{2} p_{1 / 2} \rightarrow^{2} s_{1 / 2}$ of an atom with nuclear spin $1 / 2$ is
(a) 3
(b) 4
(c) 6
(d) 5
2.16. Giventhan, $\Psi_{n, 1, \mathrm{~m}}(\mathrm{r}, \theta, \phi)=\mathrm{R}_{\mathrm{nt}}(\mathrm{r}) \mathrm{Y}_{\mathrm{mm}}(\theta, \phi) ; \mathrm{R}_{20}(\mathrm{r}) \propto\left(2-\mathrm{r} / \mathrm{a}_{0}\right) \mathrm{e}^{-\mathrm{r} / \mathrm{ao} .}, \mathrm{Y}_{0,0}(\theta, \phi)=1 / \sqrt{4 \pi}$ The position of radial node in the 2 s orbital is at
(a) $\mathrm{r}=\mathrm{a}_{0}$
(b) $\mathrm{r}=2 \mathrm{a}_{0}$
(c) $\mathrm{r}=\mathrm{a}_{\mathrm{o}} / 2$
(d) $=\mathrm{a}_{\mathrm{o}} / 4$
2.17. Consider the following reaction and use the data given below
[GATE 2001]

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$	$\Delta \mathrm{H}^{\mathrm{o}}\left(25^{\circ} \mathrm{C}\right)=-92.2 \mathrm{~kJ}$		
Substance	$\mathrm{N}_{2}(\mathrm{~g})$	$\mathrm{H}_{2}(\mathrm{~g})$	$\mathrm{NH}_{3}(\mathrm{~g})$
$\mathrm{C}_{\mathrm{P}} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$	29.1	28.8	35.1

Assuming C_{P} to be independent of temperature, the reaction at $100^{\circ} \mathrm{C}$ compared to that at $25^{\circ} \mathrm{C}$ will be
(a) Endothermic
(b) Less exothermic
(c) More exothermic
(d) Having $\Delta \mathrm{H}^{0}=0$
2.18. The reaction of 2-methylfuran with $\mathrm{DMF}-\mathrm{POCl}_{3}$ would give
(a)

(b)

(c)

(d)

2.19. The major product formed during the hydroboration-oxidation of 1-methyl cyclopentene is
(a)

(b)

(c)

(d)

2.20. Which one of the following carbonyl compounds will give a fragment ion at $\mathrm{m} / \mathrm{z}=58$ in their mass spectra?
(a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CHO}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCD}_{3}$
(d) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CHO}$
2.21. The decreasing order of reactivity of meta-nitrobromobenzene (I); 2, 4, 6-trinitrobromobenzene (II); paranitrobromobenzene (III); and 2, 4-dinitrobromobenzene (IV) towards OH^{-}ions is
(a) I > II > III > IV
(b) II $>$ IV $>$ III $>$ I
(c) IV $>$ II $>$ III $>$ I
(d) II $>$ IV $>$ I $>$ III
2.22. Identify the isotactic polypropylene from the following
(a)

(b)

(c)

(d)

2.23. Which one of the following compounds will form an osazone derivative?
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{OH}$
(b) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{OH}$
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{OCH}_{3}$
2.24. Buta-1, 3-diene on heating with maleic anhydride would give
(a)

(b)

(c)

(d)

2.25. The product obtained during the following photochemical reaction is

(a)

(b)

(d)

This section consists of TWENTY questions of FIVE marks each. ANY FIFTEEN out of these questions have to answeredon the Answer Book provided.
3.1. There are two isomers of $\operatorname{Pi}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$. X and Y . When X is reacted with thiourea(tu). $\mathrm{Pt}(\mathrm{tu})_{4}^{2+}$ is formed while Y on reaction with thiourea yields $\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{tu})_{2}$. Identify X and Y and explain the reaction.
3.2. Ligand substitution reaction on metal clusters are often found to occur by associative mechanism by breaking of a M-M bond and thereby providing an open coordination site for the incoming ligand. Which one ofthe two clusters, $\mathrm{Co}_{4}(\mathrm{CO})_{12}$ of $\mathrm{Ir}_{4}(\mathrm{CO})_{12}$ is expected to undergo faster exchange with ${ }^{13} \mathrm{CO}$? Suggest an explanation.
4.1. Using crystal-field theory, account for the fact that in square - pyramidal $\left[\mathrm{Ni}(\mathrm{CN})_{5}\right]^{3-}$ ion, the axial $\mathrm{Ni}-\mathrm{C}$ bond (217 pm) is longer than $\mathrm{Ni}-\mathrm{C}$ basal bonds (187 pm), while in trigonal bipyramidal $\left[\mathrm{CuCl}_{5}\right]^{3-}$ ion, the axial $\mathrm{Cu}-\mathrm{Cl}$ bonds (229 pm) are shorter than the $\mathrm{Cu}-\mathrm{Cl}$ equatorial ones (239 pm).
4.2. Between complexes $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right]^{2+}$ which one should have a lower energy chargetransfer band and why?
5. Write the Russell-Saunders terms of the configuration $\mathrm{p}^{1} \mathrm{~d}^{1}$ and identify the ground term. Indicate population of electrons in different d-orbitals corresponding to ${ }^{3} T_{1 g}(F),{ }^{3} T_{2 g}(F)$ and ${ }^{3} A_{2 g}(F)$ states for d^{2} configuration in octahedral symmetry.
6.1. Propose the structure of compounds A, B and C satisfying EAN rule in the following reactions:

6.2. Explain why 16 - or 14 -electron configurations are favoured over 18 -electron configurations for the elements at the end of the transition series?
7.1. Calculate spin-orbit coupling parameter (λ), for an octahedral nickel (II) complex exhibiting spin allowed d-d bands at $10,750 \mathrm{~cm}^{-1}, 17,500 \mathrm{~cm}^{-1}$ and $28,200 \mathrm{~cm}^{-1}$ respectively. The experimentally determined magnetic moment is 3.2 BM .
7.2. Explain why pKa of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiOH}(\mathrm{pKa} \approx 11)$ is lower than that of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}(\mathrm{pKa} \approx 16)$.
8.1. Define capacity factor. What is the effect of large capacity factor on the separation of analytes? How can capacity factors be optimized in gas chromatography?
8.2. What prevents simple iron porphyrins fromfunctioning as O_{2} carriers like haemoglobin?
9. Identify all the symmetry operations for HCHO with rotation axis as the z -axis and plane of the molecule being the $y z$ plane. will the transition from an a_{1} to b_{1} orbital be allowed in HCHO ? What will be the polarization of the corresponding $\mathrm{b}_{1} \rightarrow \mathrm{a}_{1}$ emission?
10.1. Using quantization condition for de Broglie wavelength on a ring, derive the expression for rotational energy levels of a rigid homonuclear diatomic rotor of bond length 2 r .
10.2. Given $\psi_{n}(x)=(2)^{1 / 2} \sin (n \pi x)$, show that eigen functions $\psi_{1}(x)$ and $\psi_{2}(x)$ of a particle in a one dimensional box of length 1 are orthogonal.
11. The emf of the cell
$\mathrm{Ag}(\mathrm{s}) \mid \mathrm{AgCl}($ satd $), \mathrm{KCl}\left(0.05 \mathrm{~mol} \mathrm{dm}^{-3}\right)\left|\mathrm{AgNO}_{3}\left(0.1 \mathrm{~mol} \mathrm{dm}^{-3}\right)\right| \mathrm{Ag}(\mathrm{s})$
is 0.431 v at 298.15 K . The mean activity coefficient of KCl is 0.817 and that of AgNO_{3} is 0.723 . Calculate the solubility product of AgCl at $25^{\circ} \mathrm{C}$.
12.1. A paramagnetic substance $\left(\mathrm{A}_{2} \mathrm{~B}_{3}-5 \mathrm{H}_{2} \mathrm{O}\right)$ initially at $\mathrm{T}=0.30 \mathrm{~K}$ was magnetized by application of strong magnetic field while the sample was surrounded by helium gas in contact with a cold reservoir. Subsequently, helium gas was pumped away and the magnetic field was slowly reduced to zero. Calculate the change in temperature of the sample using the data given below :

Unmagnetized sample		Magnetized sample	
T / K	$\mathrm{S} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$	T / K	$\mathrm{S} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$
0.30	0.40	0.30	0.19
0.25	0.32	0.25	0.15
0.18	0.19	0.20	0.12
0.15	0.14	0.15	0.10

12.2. When 2 moles of liquid A and 4 moles of liquid B are mixed, experimental measurements give entropy of mixing as $42 \mathrm{~J} \mathrm{~K}^{-1}$. Show whether the solution AB thus formed is ideal or not.
13.1. The LCAOs : $\phi_{1}=\left(1_{\mathrm{sA}}+1_{\mathrm{sB}}\right)$ and $\phi_{2}=\left(1_{\mathrm{sA}}-1_{\mathrm{sB}}\right)$ approximate the lowest σ and σ^{*} orbitals of H_{2}^{+} respectively. Show that the σ LCAO is of g-type and σ^{*} of u type. [$1_{\mathrm{S}_{\mathrm{A}}}$ and $1_{\mathrm{S}_{\mathrm{B}}}$ are the 1 s orbitals centered on H_{A} and H_{B} of $\left(\mathrm{H}_{\mathrm{A}}-\mathrm{H}_{\mathrm{B}}\right)^{+}$].
13.2. The fundamental vibrational frequency of HCl is $2885 \mathrm{~cm}^{-1}$. Assuming that HCl and DCl may be treated as Simple Harmonic Oscillator, calculate the fundamental frequency of DCl .
14.1. The conversion of A to B and C goes through the following mechanism

$$
2 \mathrm{~A} \underset{\mathrm{k}_{2}}{\stackrel{\mathrm{k}_{1}}{\rightleftharpoons}} 1 \underset{\mathrm{k}_{4}}{\stackrel{\mathrm{k}_{2}}{\rightleftharpoons}} \mathrm{~B}+\mathrm{C}
$$

Show that the equilibrium constant (K) of the overall reaction is

$$
\mathrm{K}=\frac{\mathrm{k}_{1} \mathrm{k}_{3}}{\mathrm{k}_{2} \mathrm{k}_{4}}
$$

14.2. The rate of the acid catalyzed hydrolysis of ethylacetate in HCl solution obeys the following rate law

$$
\text { Rate }=-\mathrm{d}[\text { ester }] / \mathrm{dt}=\mathrm{k}[\text { ester }][\mathrm{HC}]]
$$

where $\mathrm{k}=0.1 \mathrm{~mol}^{-1} \mathrm{dm}^{-3} \mathrm{~h}^{-1}$. Neglecting any back reaction, ealculate the time required for half the ester to be hydrolyzed if the initial concentration of ester and HCl are $0.02 \mathrm{~mol} \mathrm{dm}^{-3}$ and $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ respectively.
15.1. Using the data given below, calculate the equilibrium constant and enthalpy of the following reaction at $25^{\circ} \mathrm{C}$.

$2 \mathrm{NO}_{2}(\mathrm{~g})=\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$		
Substance	$\Delta \mathrm{G}_{4}^{0} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	$\mathrm{S}^{0} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$
$\mathrm{NO}_{2}(\mathrm{~g})$	51.31	240.06
$\mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})$	07.89	304.29

15.2. When 1.0 mol of $\mathrm{CH}_{4}(\mathrm{~g})$ is oxidized to carbon dioxide and water according to the reaction

$$
\mathrm{GH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

the corresponding thermodynamic parameters are : $\Delta \mathrm{H}^{\circ}=-890 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and $\Delta \mathrm{S}^{\circ}=-140.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. Assuming ideal gas behaviour, calculate the amount of energy that can be extracted as work at $25^{\circ} \mathrm{C}$.
16. Acid catalyzed dehydration of a tertiary alcohol $\mathrm{A}\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}\right)$ gives one major compound B , and one minor compound C both having molecular formula $\mathrm{C}_{6} \mathrm{H}_{12}$. Spectroscopic data of these compounds are as follows: Compound B : IR : $\quad 1660 \mathrm{~cm}^{-1}, 3080 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\delta: 0.91(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) .1 .70(\mathrm{~s}, 3 \mathrm{H}), 1.98(q u i n, \mathrm{~J}=7 \mathrm{~Hz}, 2 \mathrm{H})$, $5.08(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H})$
Compound C: IR ; $\quad 1640 \mathrm{~cm}^{-1}, 3090 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\delta: 0.92(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.40($ sextet, $\mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{t}, \mathrm{J}=$ $7 \mathrm{~Hz}, 2 \mathrm{H}$), 4.78 ($\mathrm{s}, 2 \mathrm{H}$)
Deduce the structure of A, B and C .
17.1. Suggest a plausible mechanism for the following reaction

17.2. Propose a mechanism for the photochemical reaction given below.

18.1. Draw π orbitals of buta-1, 3-diene and ethylene, and identify their HOMO and LUMO.
18.2. Using "frontier orbital concept", explain why the $\pi^{4 s}+\pi^{2 s}$ cycloaddition given below is photochemically not allowed?

19.1. Suggest a synthetic route to the hydroxy-ketone C using A and B starting materials.

19.2. The reaction of dimethyl fulvene D with PhLi readily gives the anion E . However, the analogous compound F does not react with PhLi to give the corresponding anion G. Explain.

20.1. Outline a synthesis of para-nitropropylbenzene from benzene.
20.2. Predict the products in the following reactions.

21.1. Write the structure of the products X, Y and Z in the following sequence of reactions.

21.2. D-Glucose and D-fructose interconvert into each other in aqueous alkaline solution. Suggest a mechanism for the interconversion.
22.1. Propose a mechanism of the following reaction.

22.2. Suggest a route for synthesis of the enone B from A.

