GATE-CY 2002

Section-A

1. This question consists of TWENTY FIVE sub-questions (1.1 to 1.25) of ONE mark each. For each of these sub-questions, four possible answers (a, b, c and d) are given, out of which only one is correct.
$[25 \times 1=25]$
1.1. The ground state of aluminium atom is
(a) ${ }^{2} \mathrm{P}_{1 / 2}$
(b) ${ }^{2} \mathrm{P}_{3 / 2}$
(c) ${ }^{4} D_{5 / 2}$
(d) ${ }^{4} S_{3 / 2}$
1.2. The point group symmetry of the free nitrate ion is:
(a) $\mathrm{D}_{3 \mathrm{~h}}$
(b) $\mathrm{C}_{3 \mathrm{v}}$
(c) $\mathrm{C}_{3 \mathrm{~h}}$
(d) D_{3}
1.3. The total number of vibrational degrees of freedom of $\mathrm{H}_{2} \mathrm{O}_{2}$ is
(a) 7
(b) 6
(c) 4
(d) 9
1.4. The velocity of the electron in the hydrogen atom
(a) increases with increasing principal quantum number
(b) decreases with increasing principal quantum number
(c) is uniform for any value of the principal quantum number
(d) first increases and then decreases with principal quantum number
1.5. The enthalpy of formation of AgCl is obtained from the enthalpy change from which one of the following processes?
(a) $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}$ (s)
(b) $\mathrm{Ag}(\mathrm{s})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{AgCl}(\mathrm{s})$
(c) $\mathrm{AgCl} \rightarrow \mathrm{Ag}(\mathrm{s})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g})$
(d) $\mathrm{Ag}(\mathrm{s})+\mathrm{AaCl} \rightarrow \mathrm{Au}(\mathrm{s})+\mathrm{AgCl}(\mathrm{s})$
1.6. The Nernst equation for the reaction, $A^{2+}+2 e \rightarrow B$, in terms of the free energy change is
(a) $\Delta G=\Delta G^{0}+2.303 R T \ln \frac{[B]}{[A]}$
(b) $\Delta G=\Delta G^{0}-2.303 R T \ln \frac{[B]}{[A]}$
(c) $-\Delta G=-\Delta G^{0}+2.303 R T \ln \frac{\left[B^{\prime}\right]}{[A]}$
(d) $\Delta G=-\Delta G^{0}+2.303 R T \ln \frac{[B]}{[A]}$
(a) KCl
(b) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(c) $\mathrm{K}_{2} \mathrm{SO}_{4}$
(d) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
1.8. The vapour pressure of a pure solvent is 0.8 atm . A non-volatile substance B is added to the solvent and its vapour pressure drops to 0.6 atm . The mole fraction of the component B in the solution is
(a) 0.75
(b) 0.50
(c) 0.25
(d) 0.20
1.9. The existence of two different coloured complexes of $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}$ is due to
(a) optical isomerism
(b) linkage isomerism
(c) geometrical isomerism
(d) coordination isomerism
1.10. Which of the following species has two nonbonded electron pairs on the central atom?
(a) TeCl_{4}
(b) ClF_{3}
(c) ICl_{2}
(d) PCl_{3}
1.11. The complex which obeys the 18 electron rule is
(a) $\mathrm{Fe}(\mathrm{CO})_{4}$
(b) $\mathrm{Ni}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)$
(c) $\mathrm{Cr}(\mathrm{CO})_{5}$
(d) $\mathrm{Cr}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$
1.12. When sodium carbonate is added to an aqueous solution of copper sulfate, which one of the following compounds is precipitated?
(a) $\mathrm{Cu}\left(\mathrm{CO}_{3}\right)_{2}$
(b) $\mathrm{Cu}(\mathrm{OH})\left(\mathrm{CO}_{3}\right)$
(c) $\mathrm{Cu}\left(\mathrm{HCO}_{3}\right)_{2}$
(d) $\mathrm{Cu}(\mathrm{OH})_{2}$
1.13. The complex formed in the brown ring test for nitrates is:
(a) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right]^{3+}$
(b) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right]^{2+}$
(c) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{NO})_{2}\right]^{2+}$
(d) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{NO})_{2}\right]^{3+}$
1.14. The transmittance of an alcoholic solution of a certain compound at 500 nm is 1 percent in a 1 cm cell. Its absorbance is
(a) 1.0
(b) 2.0
(c) 2.5
(d) 4.0
1.15. The species which has a square planar structure is
(a) BF_{4}
(b) FeCl_{4}^{-}
(c) SF_{4}
(d) XeF_{4}
1.16. Electron transfer from $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}$ to $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$ is likely to occur via
(a) d-d transition
(b) inner sphere electron transfer
(c) SN_{1} mechanism
(d) outer sphere electrontransfer.
1.17. In allene, hybridization of the central and terminal carbons respectively, are
(a) $s p^{2}$ and $s p^{2}$
(b) $s p^{2}$ and $s p^{3}$
(c) $s p$ and $s p^{2}$
(d) $s p$ and $s p^{3}$
1.18. Among the isomers of $\mathrm{C}_{4} \mathrm{H}_{6}$ given below, the compound which exhibits an absorption band at $3300 \mathrm{~cm}^{-}$ ${ }^{1}$ in the IR spectrum, is:
(a) 1,3-butadiene
(b) 1-butyne
(c)2-butyne
(d) cyclobutene.
1.19. Among formaldehyde, acetaldehyde and benzaldehyde, the aldehydes which undergo Cannizaro's reaction are
(a) All the three
(b) formaldehyde and acetaldehyde
(c) acetaldehyde and benzaldehyde
(d) formaldehyde and benzaldehyde
1.20. Reaction of benzyl benzoate with an excess of methylmagnesium bromide generates a mixture of
(a) benzyl alcohol and benzoic acid
(b) benzyl methyl ether and 2-phenylpropan-2-ol
(c) benzyl alcohol and 2-phenylpropan-2-ol
(d) ethyl benzene and benzoic acid
1.21. Benzaldehyde can be prepared by reacting phenylmagnesium bromide with
(a) N, N-dimethylformamide
(b) carbon dioxide
(c) formaldehyde
(d) ethyl chloroformate
1.22. Proteins are biopolymers. The monomer units present in them are
(a) carbohydrates
(b) amino acids
(c) fatty acids
(d) alkenes
1.23. Among the bromides I-III given below, the order of their reactivity in the $\mathrm{S}_{\mathrm{N}}{ }^{1}$ reaction is:

(a) III $>$ II $>$ I
(b) II $>$ III $>$ I
(c) III $>$ I $>$ II
(d) II $>$ I $>$ III
1.24. Reaction of phenyl acetate with anhydrous aluminium chloride generates a mixture of
(a) ortho-, meta- and para-hydroxyacetophenones
(b) meta- and para-hydroxyacetophenones
(c) ortho- and meta-hydroxyacetophenones
(d) orth- and para-hydroxyacetophenones
1.25. The major product formed in the reaction of anisole with lithium, liquid ammonia and t-butanol is
(a) 1-methoxycyclohexa-1, 4-diene
(b) 2-methoxycyclohexa-1, 3-diene
(c) 1-methoxycyclohexa-1, 3-diene
(d) 3-methoxycyclohexa-1, 4-diene
2. This question consists of TWENTY FIVE sub-questions (2.1 to 2.25) of ONE mark each. For each of these sub-questions, four possible answers (a,b, cand d) are given, out of which only one is correct.
[$25 \times 2=50]$
2.1. Consider an orthorhombic unit cell of dimensions $\mathrm{a}=450 \mathrm{pm}, \mathrm{b}=650 \mathrm{pm}$, and $\mathrm{c}=400 \mathrm{pm}$. The perpendicular distance between the (110) planes is
(a) 650 pm
(b) 450 pm
(c) 370 pm
(d) 500 pm
2.2. The spacing between the rotational lines of the is HF is $40 \mathrm{~cm}^{-1}$. The corresponding spacing between the rotational lines in DF is approximately.
(a) $20 \mathrm{~cm}^{-1}$
(b) $30 \mathrm{~cm}^{-1}$
(c) $60 \mathrm{~cm}^{-1}$
(d) $75 \mathrm{~cm}^{-1}$.
2.3. The activation energy for the decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ is $76 \mathrm{~kJ} / \mathrm{mol}$ atroomtemperature and the decomposition is very slow. When a little iodide is added, the activation energy decreases to $57 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The rate coefficient increases approximately by a factor of
(a) 500
(b) 1000
(c) 2000
(d) 50
2.4. The probability of finding a free particle inside the left hatrof 1 -dimensional box of length L is
(a) $\mathrm{L} / 2$
(b) $\sqrt{(2 / \mathrm{L})}$
(c) $2 / \mathrm{L}$
(d) $1 / 2$
2.5. The force between two electrons separated by 0.1 nm in vacuum $\left(\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~J}^{-2} \mathrm{C}^{-2} \mathrm{~m}^{-1}\right)$ is
(a) $2.31 \times 10^{-8} \mathrm{~N}$
(b) $-2.31 \times 10^{-8} \mathrm{~N}$
(c) $-1.15 \times 10^{-8} \mathrm{~N}$
(d) $1.155 \times 10^{-8} \mathrm{~N}$
2.6. Assmuing that there is no chemical reaction, the change in entropy when 2 mole of $\mathrm{N}_{2}, 3$ mols of H_{2} and 2 mols of NH_{3} are mixed at constant demperature is
(a) $-62.79 \mathrm{JK}^{-1}$
(b) $62.79 \mathrm{JK}^{-1}$
(c) $125.58 \mathrm{JK}^{-1}$
(d) $-125.58 \mathrm{JK}^{-1}$
2.7. The half-life of a firstorder reaction varies with temperature according to
(a) $\ln t_{1 / 2} \propto 1 / T$
(b) $\ln t_{1 / 2} \propto T$
(c) $t_{1 / 2} \propto 1 / T^{2}$
(d) $t_{1 / 2} \propto T^{2}$
2.8. The ionization constant of formic acid, which ionizes to an extent of 4.2%, in 0.1 M aqueous solution is
(a) 0.92×10^{-2}
(b) 1.84×10^{-2}
(c) 1.84×10^{-4}
(d) 0.92×10^{-4}
2.9. Radiation of $10^{14} \mathrm{~Hz}$ falls in the region of
(a) Radiofrequency
(b) Microwave
(c) Visible
(d) X-rays
2.10. The bond order for $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}^{-}, \mathrm{O}_{2}^{-}$varies as
(a) $\mathrm{N}_{2}>\mathrm{N}_{2}^{-}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}$
(b) $\mathrm{N}_{2}>\mathrm{O}_{2}>\mathrm{N}_{2}^{-}>\mathrm{O}_{2}^{-}$
(c) $\mathrm{O}_{2}>\mathrm{N}_{2}>\mathrm{O}_{2}^{-}>\mathrm{N}_{2}^{-}$
(d) $\mathrm{N}_{2}^{-}>\mathrm{N}_{2}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}$
2.11. Sodium metal crystalizes in the body centered cubic lattice with cell edge a. The radius of the sodium atom is
(a) $a / \sqrt{2}$
(b) $\mathrm{a} \sqrt{3} / 2$
(c) $a \sqrt{3} / 4$
(d) $a / 2 \sqrt{2}$
2.12. The metals involved in nitrogenase are
(a) Fe and Mg
(b) Mo and K
(c) Mo and Fe
(d) Fe and K .
2.13. The complexes $\mathrm{V}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}$ and $\mathrm{Cr}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}$ are both readily oxidized in air to their respective cations. The number of unpaired electrons, respectively, in each are
(a) 0,0
(b) 1,0
(c) 0,1
(d) 1,1
2.14. The lowest energy d-d transition in the $\mathrm{Cr}(\mathrm{III})$ complexes varies in the order
(a) $\mathrm{CrCl}_{6}{ }^{3-}<\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}<\mathrm{Cr}(\mathrm{en})_{3}^{3+}<\mathrm{Cr}(\mathrm{CN})_{6}^{3-}$
(b) $\mathrm{CrCl}_{6}^{3-}<\mathrm{Cr}(\mathrm{en})_{3}^{3+}<\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}<\mathrm{Cr}(\mathrm{CN})_{6}^{3-}$
(c) $\mathrm{Cr}(\mathrm{CN})_{6}^{3-}<\mathrm{CrCl}_{6}^{3-}<\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}<\mathrm{Cr}(\mathrm{en})_{3}^{3+}$
(d) $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}<\mathrm{Cr}(\mathrm{en})_{3}^{3+}<\mathrm{CrCl}_{6}^{3-}<\mathrm{Cr}(\mathrm{CN})_{6}^{3-}$
2.15. The bonding of cyclopentadienyl in $\mathrm{Ti}(\mathrm{Cp})_{4}$ is such that
(a) all Cp rings are pentahapto
(b) one Cp ring is pentahapto and the other three rings are monohapto
(c) two Cp rings are monohapto and the other two rings are pentahapto
(d) all Cp rings are monohapto
2.16. The structures of O_{3} and N_{3}^{-}are
(a) linear and bent, respectively
(b) both linear
(c) both bent
(d) bent and linear, respectively.
2.17. Lability of the ions $\mathrm{Cr}^{2+}, \mathrm{Mn}^{2+}$ and V^{2+} should follow the order
(a) $\mathrm{Cr}^{2+}>\mathrm{Mn}^{2+}>\mathrm{V}^{2+}$
(b) $\mathrm{Mn}^{2+}>\mathrm{Cr}^{2+}>\mathrm{V}^{2+}$
(c) $\mathrm{Mn}^{2+}>\mathrm{V}^{2+}>\mathrm{Cr}^{2+}$
(d) $\mathrm{V}^{2+}>\mathrm{Cr}^{2+}>\mathrm{Mn}^{2+}$
2.18. The major product formed in the reaction of cyclopentadiene with a mixture of dichloroacetylchloride and triethylamine is
(a)

(c)

(d)

2.19. The configurations at the three chiral centres in the bicyclodecanol given below, are

(a) $1 \mathrm{~S}, 2 \mathrm{~S}, 6 \mathrm{R}$
(b) $1 \mathrm{~S}, 2 \mathrm{~S}, 6 \mathrm{~S}$
(c) $1 \mathrm{R}, 2 \mathrm{~S}, 6 \mathrm{R}$
(d) 1R, 2S, 6R
2.20. Among the bicyclo [$3,3,0]$ octanediones given below, which one will exhibit FIVE signals in the broad band decoupled ${ }^{13} \mathrm{C}$ NMR spectrum?
(a)

(b)

(c)

(d)

2.21. The major product formed in the reaction of 1,5 -cyclooctadiene with 0.5 equivalent of diborane is
(a)

(b)

(c)

(d)

2.22. The two pericyclic reactions successively involved in the thermal transformationgiven below are

(a) 6π-electrocyclization followed by $[4+2] \pi$-cycloaddition
(b) 8π-cycloaddition followed by $[2+2] \pi$-electrocyclization
(c) 6π-cycloaddition followed by $[2+2] \pi$-electrocyclization
(d) 4π-electrocyclization followed by $[4+2] \pi$-cycloaddition.
2.23. The major product formed in the reactionbenzoic acid with isobutylene in the presence of a catalytic amount of sulfuric acid is:
(a)

(b)

(c)

(d)

2.24. The major product formed in the reaction of the oxime given below with sulfuric acid is

(a)

(b)

(c)

(d)

2.25. The major product formed in the thermal reaction given below, is

(a) $4(\mathrm{H})-$ Furan
(b)

(c)

(d)

Section-B

This section consists of TWENTY questions of FIVE marks each. ANY FIFTEEN out of these questions have to answered on the Answer Book provided.
[75 Marks]
3. For the reaction, trans- $\mathrm{PtL}_{2} \mathrm{Cl}_{2}+\mathrm{Y} \rightarrow$ trans- $\mathrm{PtL}_{2} \mathrm{ClY}+\mathrm{Cl}^{-}$the rate constant K varies as follows:

Y		L	$\mathrm{K}\left(10^{3} \mathrm{M}^{-1} \mathrm{~S}^{-1}\right)$
(i)	PPh_{3}	Py	249,000
(ii)	SCN^{2}	Py	180
(iii)	I^{-}	Py	107
(iv)	SCN	PEt_{3}	371

(a) What is the mechanism of the reaction?
(b) Explain the variations observed.
4.1. Calculate the number of theoretical plates for a column where the retention time for a compound is two minutes and the width of the peak at the base is 10 s .
4.2. Why is the thermal conductivity detector unsuitable for the gas chromatographic detection of hexachlorobenzene?
4.3. What types of HPLC columns are suitable for the analysis of organic compounds such as
(a) cyclohexene, cyclohexane, methylcyclohexane
(b) glycerol, 1,2-dihydroxy propane, 1,3 dihydroxy propane
5. Write down the products formed ineach of the following reactions.
5.1. $\mathrm{P}_{2} \mathrm{~S}_{5}+\mathrm{PCl}_{5} \longrightarrow$
5.2. $\mathrm{S}+\mathrm{NH}_{3}$ (liquid) \leftrightarrows
5.3. $\mathrm{NaBH}_{4}+\mathrm{I}_{2} \longrightarrow$
5.4. $\mathrm{XeO}_{3}+\mathrm{OH}^{-} \rightleftarrows$
5.5. $\mathrm{SiO}_{2}+\mathrm{HF}(\mathrm{aq}) \longrightarrow$
6.1. Draw the structures of the Wilkinson's catalyst and the product formed on its reaction with hydrogen.
6.2. What is the product formed in the reaction of $\mathrm{RCo}(\mathrm{CO})_{4}$ with CO in the presence of hydrogen? Indicate clearly the intermediates involved.
7.1. Distinguish between limiting current and residual current and residual current in a polarogram.
7.2. What is the separation between the anodic and cathodic waves in a cyclic voltammetry experiment for the reversible one-electron and two-electron processes?
7.3. How does the separation vary with the scan rate for a quasi-reversible process?
8.1. Give the structures of
(a) $\mathrm{H}_{3} \mathrm{CPF}_{4}$ and
(b) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
8.2. $\quad \mathrm{MgO}$ and NaF are isoelectronic and crystallize in NaCl structure. Why MgO is twice as hard as NaF and has a much higher melting point than NaF ?
8.3. Why does the lowest energy charge transfer band shifts from $18,000 \mathrm{~cm}^{-1}$ in KMnO_{4} to $26,000 \mathrm{~cm}^{-1}$ in $\mathrm{K}_{2} \mathrm{CrO}_{4}$?
9.1. Aqueous solution of MnCl_{2} exhibits a number of very weak intensity absorption bands ($\varepsilon \sim 0.01$) between 18,000 to $42,000 \mathrm{~cm}^{-1}$ while solution of TiCl_{3} in dilute sulfuric and exhibits a relatively strong band at $20,000 \mathrm{~cm}^{-1}$ with a shoulder at $17,400 \mathrm{~cm}^{-1}(\varepsilon \sim 10)$. Account for these observations.
9.2. Explain the variation of hydration energies of divalent metal ions from calcium to zinc.
10.1. Calculate the vapour pressure of toluence at $100^{\circ} \mathrm{C}$ assuming that Trouton's rule is obeyed. The boiling point of toluene is $110^{\circ} \mathrm{C}$.
10.2. The vapour pressure of ethanol at $20^{\circ} \mathrm{C}$ is 44.5 mm . When 15 g of a non-volatile compound A is dissolved in 500 g of ethanol, the vapour pressure decreases to 43.5 mm . Calculate the molecular weigth of A.
11.1. $\quad 0.1 \mathrm{M} \mathrm{CuSO}_{4}$ solution is electrolyzed employing Cu electrodes using a current of 10 A for 1 h . Calculate the weight of Cu deposited.
11.2. A solution contains $0.1 \mathrm{~mol} / \mathrm{dm}^{3}$ of $\mathrm{Cl}^{-}, 0.1 \mathrm{~mol} / \mathrm{dm}^{3}$ of Brand $0.1 \mathrm{~mol} / \mathrm{dm}^{3}$ of I^{-}. solid AgNO_{3} is gradually added to this solution. Assuming that the volume does not change, answer the following questions.
$\mathrm{K}_{\text {sp }}(\mathrm{AgCl})=1.7 \times 10^{-10}\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)^{2}, \mathrm{~K}_{\mathrm{sp}}(\mathrm{AgBr})=50 \times 10^{-13}\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)^{2}$
$\mathrm{K}_{\text {sp }}(\mathrm{AgI})=8.5 \times 10^{-17}\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)^{2}$
(a) Which salt will precipitate first?
(b) What is the concentration of Ag^{+}ions required to start precipitation?
(c) What will be the concentration of the first ion when the second salt begins to precipitate?
12.1. For BCl_{3} molecule, the Cl atoms are numbered as $1,2,3$. Examine whether the operations $\sigma_{v}(1) \sigma_{v}(2)$ commute. Indicate the symmetry operation equivalent to the binary operations in each case.
12.2. Give the symmetry peration equivalent to
(i) C_{4}^{6}
(ii) S_{4}^{2}
13. Upon absorption of light of 266 nm , ozone dissociates in the following way

$$
\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{~g})
$$

The power of the incident radiation is 20 mW and the sample of ozone is exposed for a period of 3 hrs . The amount of ozone that is photolysed in $10 \mu \mathrm{~mol}$. Calculate the quantum yield for the ozone photolysis reaction.
14.1. Acetic acid show two signals a and b at $\delta=8.0 \mathrm{ppm}$ and 3.8 ppm , respectively in a 50 MHz NMR spectrometer. Calculate the separation in frequency between the two signals on a 300 MHz spectrometer.
14.2. The 1 s wavefunction for the hydrogen atom is

$$
\mathrm{R}_{1 \mathrm{~s}}(\mathrm{r})=(1 / \sqrt{\pi})\left(1 / \mathrm{a}_{0}\right)^{3 / 2} \exp \left(-\mathrm{r} / \mathrm{a}_{0}\right)
$$

Calculate the probability that the electron will be found within the first Bohr radius.
15.1. A substance is four times more soluble in CHCl_{3} than in $\mathrm{H}_{2} \mathrm{O}$. If 10 g of the substance is dissolved in 500 ml of water, how much of it will be removed by extraction with $500 \mathrm{ml}^{\text {of } \mathrm{CHCl}_{3}}$?
15.2. The root mean square velocity of O_{2} molecules is $575 \mathrm{~m} \mathrm{~s}^{-1}$. Find out the temperature of O_{2} gas.
16.1. Set up the Huckel determinant for methyleneimine $\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{HN}\right)$ taking $\beta_{\mathrm{C}-\mathrm{N}}$ as 1.0β and α_{N} as $\alpha+0.5 \beta$, where α and β represent the usual Coulomb and resonance integrals respectively, and obtain the Huckel molecular orbital energy levels.
16.2. Explain, why the ${ }^{1} \mathrm{H}$ NMR spectrum of p -dichlorobenzene shows a singlet, whereas p -difluorobenzene shows a multiplet.
17.1. Identify the structure of the major product formed in the following reaction, and give a mechanism of its formation.

17.2. Give a suitable mechanism for the following transformation.

18.1. Identify the products/reagents (A-C) in the following sequence.

18.2. Write structures of the products formed in the following reaction.

19.1. Write the conformational structures of the two cyclic isomers of glucose which are responsible for the phenomenon of mutarotation.
19.2. The optically active compound given was found to racemise on heating in a microwave oven. Give a suitable explanation.

20. Suggest suitable reagents to bring about the following transformations (may require more than one step).
(i) $\mathrm{PhBr} \xrightarrow{?} \mathrm{PhD}$
(ii)

(iii)

(iv)

(v)

21.1. Among the two hydroxyesters given below, which one will readily lactonise on treatment with a mild base. Write the structure of the product and justify your answer briefly.

21.2. Identify the reactive intermediate involved in the reaction of faran with a mixture of HNO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$. Write the mechanism and the structure of the final product.
22. A sweet smelling organic compound A (mol.formula $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$) on reaction with lithium aluminium hydride furnishes a single primary alcohol B . Whereas reaction of A with an excess of methylmagnesium bromide furnishes two alcohols B and C. In the ${ }^{1} \mathrm{H}$ NMR spectrum, compound B exhibits signals at $\delta 3.8(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7$ $\mathrm{Hz}), 1.8(1 \mathrm{H}, \mathrm{m}), 1.6\left(1 \mathrm{H}\right.$, brs, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$ and $0.9(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz})$. Identify the structures of the compounds A, B and C , and explain the reactions.

