GATE-CY 2005

Section-A

Q. 1 - Q. 30 : Carry ONE mark each.

1. The complexes $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Br}_{2}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$ are examples of
(a) ionization isomerism
(b) linkage isomerism
(c) geometric isomerism
(d) optical isomerism
2. In the trigonal bipyramidal crystal field, the d orbital with the highest energy is
(a) $d_{x y}$
(b) $\mathrm{d}_{\mathrm{x}-\mathrm{y}}^{2}$
(c) d_{yz}
(d) d_{z}^{2}
3. The magnetic moment of the complex $\mathrm{K}_{3}\left[\mathrm{CoF}_{6}\right]$ is $5.0 \mu_{\mathrm{B}}$. The total stabilization energy will be
(a) $-0.4 \Delta_{0}$
(b) $-0.4 \Delta_{0}+\mathrm{P}$
(c) $-2.4 \Delta_{0}+3 \mathrm{P}$
(d) $-1.8 \Delta_{0}+3 \mathrm{P}$
4. The metal present at the active site of the protein carboxypeptidase A is
(a) Zinc
(b) molybdenum
(c) magnesium
(d) cobalt
5. The neutral complex which follows the 18-electron rule is
(a) $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}$
(b) $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})$
(c) $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{CO}$
(d) $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)$
6. The shape of the molecule $\mathrm{XeO}_{2} \mathrm{~F}_{2}$ is
(a) distorted tetrahedral
(b) square planar
(c) trigonal bipyramidal
(d) tetrahedral
7. Triplet superphosphate is made by treating phosphate rock with
(a) conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
(b) conc. HNO_{3}
(c)conc. HCl
(d) conc. $\mathrm{H}_{3} \mathrm{PO}_{4}$
8. The number of hydroxy (OH) groups present in phosphorus acid is
(a) one
(b) two
(c) three
(d) four
9. Out of the following, the one whichris not an excitation source for IR spectrometer is
(a) Tungsten filament lamp
(b) Nernst glower
(c) Deuterium lamp
(d) Mercury arc
10. One of the following is not related topolarography
(a) limiting current
(b) diffusion current constant
(c) Ilkovic equation
(d) current efficiency
11. Among the following, the optically inactive compound is:
(a)

(b)

(c)

(d)

12. Esterification of the acid P with the alcohols Q will give

(S)-P

(\pm)- Q
(a) only one enantiomer
(b) a mixture of diastereomers
(c) a mixture of enantiomers
(d) only one diastereomer
13. ${ }^{1} \mathrm{H}$ NMR spectrum of [18]-annulene shows
(a) Only one peak at $\delta 7.2(18 \mathrm{H})$
(b) Only one peak at $\delta 5.0(18 \mathrm{H})$
(c) Two peaks at $\delta 9.0(12 \mathrm{H})$ and $\delta-3.0(6 \mathrm{H})$
(d) Two peaks at $\delta 9.0(6 \mathrm{H})$ and $\delta-3.0(12 \mathrm{H})$
14. The compound formed on methanolysis of P is

(a)

(b)

(c)

(d)

15. The pK_{a} values for the three ionizable groups \mathbf{X}, and Z of glutamic acid are 4.3, 9.7 and 2.2 respectively

The isoelectric point for the ammo acid is
(a) 7.00
(b) 3.25
(c) 4.95
(d) 5.95
16. Bridge-head hydrogen of the conformer of cis-decalin is positioned as
(a) a, a
(b) e, e
(c) a, e
(d) pseudo-a, pseudo-e
[$\mathrm{a}=\mathrm{axial} ; \mathrm{e}=$ equatorial]
17. The major product of the acetylation of salicylic acid with $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{H}^{+}$followed by heating with anhydrous AlCl_{3} is
(a)

(b)

(c)

(d)

18. Order of reactivity of the following dienes X, Y and Z in Diels-Alder reaction is

(X)

(Y)

(Z)
(a) $X>Z>Y$
(b) $\mathrm{Y}>\mathrm{X}>\mathrm{Z}$
(c) $\mathrm{Y}>\mathrm{Z}>\mathrm{X}$
(d) $\mathrm{X}>\mathrm{Y}>\mathrm{Z}$
19. The major product P of the following reaction is

(a)

(b)

(c)

20. Among the following, the most stable isomer for 3-methoxycyelohe xanol is:
(a)

(b)

(d)

21. A reaction follows second order rate law, $-\mathrm{d}[\mathrm{A}] / \mathrm{dt}=\mathrm{k}[\mathrm{A}]^{2}$, if
(a) a plot of [A] versus t is a straight line
(b) a plot of $1 /[\mathrm{A}]$ versus t is a straight line
(c) a plot of $\ln [\mathrm{A}]$ versus t is a straight line
(d) a plot of $e^{[A]}$ versus t is a straight line
22. In an adiabatic system, the work done to change its state from A to B is
(a) dependent on path from Ato B
(b) independent of path from A to B
(c) path dependence is related to particulars of states A and B
(d) path dependence is related to both states A and B and choice of path
23. The set of eigenfunctions $\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a}(0 \leq x \leq a, n=1,2,3 \ldots)$ is
(a) orthogonal
(b) normalized
(c) both orthogonal and normalized
(d) unnormalized
24. The function $e^{a x^{2}}(\alpha>0)$ is not an acceptable wave function for bound system, because
(a) it is not continuous
(b) it is multivalued
(c) it is not normalisable
(d) all of these
25. First order perturbation correction $\Delta \varepsilon_{\mathrm{n}}{ }^{(1)}$ to energy level ε_{n} of a simple harmonic oscillator due to the anharmonicity perturbation $\gamma \mathrm{x}^{3}$ is given by
(a) $\Delta \varepsilon_{n}{ }^{(1)}=\gamma$
(b) $\Delta \varepsilon_{\mathrm{n}}{ }^{(1)}=\gamma^{2}$
(c) $\Delta \varepsilon_{\mathrm{n}}{ }^{(1)}=\gamma^{-1}$
(d) $\Delta \varepsilon_{\mathrm{n}}{ }^{(1)}=0$
26. Resonant frequencies for EPR and NMR are respectively in the spectral region
(a) microwave and far-IR
(b) far-IR and microwave
(c) radiofrequency and microwave
(d) microwave and radiofrequency
27. The $2 s$ orbital of H -atom has radial node at $2 a_{0}$ because $\psi_{2 s}$ is proportional to
(a) $\left(\frac{1}{2}+\frac{r}{a_{0}}\right)$
(b) $\left(2+\frac{r}{a_{0}}\right)$
(c) $\left(2-\frac{r}{a_{0}}\right)$
(d) $\left(2-\frac{r}{2 a_{0}}\right)$
28. Given that the mean speed of H_{2} is $1.78 \mathrm{~km} \mathrm{~s}^{-1}$, the mean speed of D_{2} will be
(a) $1.26 \mathrm{~km} \mathrm{~s}^{-1}$
(b) $2.52 \mathrm{~km} \mathrm{~s}^{-1}$
(c) $5.04 \mathrm{~km} \mathrm{~s}^{-1}$
(d) $3.17 \mathrm{~km} \mathrm{~s}^{-1}$.
29. The triple point for water is
(a) unique
(b) depends on p but is independent of T
(c) depends on T but is independent of P
(d) depends on both P and T
30. Hydrolysis of urea by urease is
(a) first order at high concentration of urea
(b) zero order at high concentration of urea
(c) independent of the concentration of urea
(d) first order with respect to both urea and urease

Q. 31 - Q. 85 : Carry TWO marks each.

31. The rate of exchange of cyanide ligands in the complexes (i) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$, (ii) $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}$ and (iii) $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$ by ${ }^{14} \mathrm{CN}$ follow the order.
(a) ii > i > iii
(b) iii $>$ i $>$ ii
(c) i\rangle iiil $\stackrel{\mathrm{ii}}{ }$
(d) i> ii > iii
32. Ligand field stabilization energies are smaller for lanthanides compared to transition metals in the same oxidation state because
(a) size of lanthanide ions are larger
(b) forbitals interact less effectively with ligands
(c) size of lanthanide ions are smaller
(d) lanthanides favour oxygen donor ligands
33. For the metal-olefin complexes (i) $\left[\mathrm{PtCl}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{-}$and (ii) $\left[\mathrm{PtCl}_{3}\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right)\right]^{-}$, the correct statement is that
(a) carbon-carbon bond lengthis same both in (i) and (ii)
(b) carbon-carbon bond length in (i) is smaller compared to that of (ii)
(c) carbon-carbon bondlength in (i) is larger compared to that of (ii0
(d) a metallacycle is formed in each complex
34. A solution containing 47 ppm of a compound X (FW 225) has a transmittance of 29.7% in a 1.5 cm cell at 400 nm . The molar absorptivity in $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}$ is
(a) 1.89×10^{3}
(b) 1.42×10^{3}
(c) 1.68×10^{3}
(d) 1.79×10^{3}
35. The values of $\mathrm{M}-\mathrm{C}$ stretching frequencies of (i) $\left[\mathrm{V}(\mathrm{CO})_{6}\right]^{-}$, (ii) $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$ and (iii) $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$follow the trend
(a) (ii) $>$ (i) $>$ (iii)
(b) (ii) $>$ (iii) $>$ (i)
(c) (i) $>$ (ii) $>$ (iii)
(d) (iii) $>$ (ii) $>$ (i)
36. A substance undergoes a two electron reversible reduction at dropping mercury electrode, and gives adiffusion current of $7.5 \mu \mathrm{~A}$. When the potential at the dropping mecury electrode is -0.615 V , the current is $1.5 \mu \mathrm{~A}$. The $\mathrm{E}_{1 / 2}$ (in volt) will be
(a) -0.683
(b) -0.674
(c) -0.652
(d) -0.633
37. The lanthanide complex (acac $=$ acetylacetonate; phen $=1,10$-phennathroline) that do not have square antiprismatic structure is
(a) $\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right]^{2-}$
(b) $\left[\mathrm{La}(\mathrm{acac})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
(c) $\left[\mathrm{Ce}(\mathrm{acac})_{4}\right]$
(d) $\left[\mathrm{Eu}(\mathrm{acac})_{3}(\right.$ Phen $\left.)\right]$
38. Among the following, the incorrect statement about SiC is that
(a) it is known as corundum
(b) it is prepared by reducing quartz with a slight excess of coke in an electric furnace at $2000-2500^{\circ} \mathrm{C}$
(c) pure SiC is almost colourless or pale yellow
(d) its hardness is slightly less than diamond.
39. The incorrect statement regarding carboranes is that
(a) carbon tends to adopt the position of the lowest coordination number on the polyhedron
(b) CH groups tend to be more positive than BH groups with the same coordination number
(c) carbon tends to keep as close as possible to other carbon atoms
(d) generally, arachno-carboranes are less stable thermally than the corresponding closo-carboranes
40. The incorrect statement for solid sodium chloride is that
(a) both sodium and chloride ions adopt inert gas configuration
(b) the conduction band is full
(c) the condduction band is empty
(d) the valence band is full
Q. 41 - Q. 48 required matching of items of Column-I withthe appropriate items in Column-II. Choose the correct one from the alternatives (a), (b), (c) and (d)
41. Column-I
(P) Cytochromec
(Q) Calmodulin
(R) Chlorophyll
(Q) Alcohol dehydrogenase
(a) P-V, Q-VI, R-III, Q-V
(c) R-III, R-IV, R-Y, R-III
42. Column-1
P. Atomic absorption
Q. Chronopotentiometry
R. Spectrophotometry
S. Conductometry

Codes:

(a) P-I, Q-III, R-IV, S-V
(b) P-VI, Q-I, R-IV, S-II
(c) P-II, Q-III, R-IV, S-V
(d) P-V, Q-VI, R-II, S-IV

Column-II

(1) Molybdenum
(II) Potassium
(III) Magnesium
(IV) Zinc
(V) Iron
(VI) Calcium
(b) Q-II, Q-III, Q-IV, Q-VI
(d) S-IV, S-V, S-II, S-IV

Column-2
I. Transitiontime
II. Cell constant
III. Coulomb
IV. Molar absorptivity
V. Limiting current
VI. Hollow cathode lamp
43. Require matching of items of Column I with the appropriate items in Column - II. Choose the correct one from the alternatives (a), (b), (c) and (d).

Column - I

P: Wilkinson's catalyst
Q: Speiers's catalyst
R: Water gas shift catalyst
S: Zeolite ZSM-5 catalyst

(a)	(b)	(c)	(d)
P-III	P-I	P-V	P-III
Q-II	Q-V	Q-II	Q-VI
R-VI	R-III	R-VI	R-IV
S-IV	S-IV	S-IV	S-II

(d)

P-III
Q-VI
S-II

Column - II

I. trans $-\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$
II. Hydrosilylation
III. $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$
IV. Synthetic gasoline
V. hydroformlylation
VI. Zinc-copper oxide.

Column-2

I. Manufacture of nickel
II. Manufacture of nitric acid
III. Manufacture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
IV. Manufacture of silicones
V. Manufacturee of caustic soda
VI. Miningoffelemental sulfur

Codes:

(a) P-I, Q-III, R-II, S-VI
(c) P-II, Q-I, R-IV, S-V
45. Column-I (Compounds)
P. cyclohexanone
Q. cyclopentanone
R. cyclobutanone
S. cyclopropanone
(b) P-II, Q-III, R-I, S-VI
(d)P-III, Q-II, R-V, S-VI

Column-2 (Carbonyl stretching frequency $\left(\mathrm{cm}^{-1}\right)$)
I. 1910
II. 1715
III. 1813
IV. 1650
V. 1780
VI. 1745

Codes:

(a) P-I, Q-II, R-III, S-IV
(b) P-II, Q-VI, R-V, S-III
(c) P-VI, Q-V, R-IV, S-III
(d) P-I, Q-V, R-IV, S-III

Column-2
I. Adiabatic demagnetization
II. Slater determinant
III. Partition function
IV. maxwellian distribution
V. LCAO-MO
VI. Photoejection

Codes:

(a) P-IV, Q-I, R-VI, S-III
(b) P-II, Q-I, R-IV, S-III
(c) P-II, Q-V, R-VI, S-IV
(d) P-VI, Q-IV, R-III, S-II
47. Require matching of items of column-I with the approriate items in column - II. Choose the correct one from the alternative (a), (b), (c) and (d).

Column - I

Spectral Technique
P. Rotational transition
Q. Vibrational transition
R. Electronic transition in atoms
S. Molecular ensemble

Column - II

Selection Rule

I. $\Delta v= \pm 1$
II. $\Delta \mathrm{J}=0$
III. $\Delta \mathrm{J}= \pm 1$
IV. $\Delta \mathrm{l}= \pm 1$
V. $\Delta \mathrm{m}_{1}= \pm 1$
VI. $\Delta v=0$
VII. $\Delta l=0$
(b) P-II, Q-I, R-IV, S-V
(d) P-I, Q-VI, R-VII, S-V

Column-2 (Bond order and magnetic property)
I. 2.5, paramagnetic
II. 2.0, diamagnetic
III. 1.5, diamagnetic
IV. 1.0, diamagnetic
V. 2.0, paramagnetic
VI. 1.5', paramagnetic

Codes:

(a) P-III, Q-V, R-IV, S-III
(b) R-II, Q-II, R-IV, S-III
(c) P-III, Q-V, R-IV, S-VI
49. The major product P formed in the given

(a)

(b)

(c)

(d)

50. The order of reactivity towards acid catalyzed hydrolysis of the following cyclic acetals is:

X

Y

Z
(a) $\mathrm{Z}>\mathrm{Y}>\mathrm{X}$
(b) $\mathrm{X}>\mathrm{Y}>\mathrm{Z}$
(c) $\mathrm{X}>\mathrm{Z}>\mathrm{Y}$
(d) $Z>X>Y$
51. The binaphthol (Bnp) is:

(a) An optically active compound with (R)-configuration.
(b) An optically inactive compound.
(c) A meso compound
(d) An optically active compound with (S)-configuration.
52. In the given reactions, identify the correct combination of their major products P and $\mathrm{Q}\left[\mathrm{LDA}=\mathrm{LiN}(\mathrm{i}-\mathrm{Pr})_{2}\right]$

(a)

(b)

(c)

(d)

53. The major stereoisomer obtained in the reaction of $(\mathbf{S})-2$-phenylpropanal with MeMgBr is:
(a)

(b)

(c)

(d)

54. The major product P formed in the following reaction is

(a)

(b)

(c)

(d)

55. Iodo-lactonization of β, γ - unsaturated carboxylic acid X with I_{2} and NaHCO_{3} gives.

(a)

(b)

(c)

(d)

56. The major stereoisomer P obtained in the following reaction is:
(a)

(b)

(c)

(d)

57. The major product P of the following reaction is:

(a)

(b)

(c)

(d)

58. Cis-and trans-2-methy-5-t-butyl-1, 3-dioxane each can exist as two conformers as shown below

The preferred conformations for the cis- and trans-compounds will be
(a) P, R
(b) Q, S
(c) P, S
(d) Q, R
59. The major product P of the given reaction is

(a)

(b)

(c)

(d)

60. The major product P formed in the following photochemical reaction is

(a)

(b)

(c)

(d)

61. An organic compound having molecular formula $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}$ exhibits the following peaks in IR and ${ }^{1} \mathrm{H}$ NMR spectra.

IR : $1720\left(\mathrm{~cm}^{-1}\right)$
${ }^{1} \mathrm{H}$ NMR : $6.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}) 5.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 4.53(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6 \mathrm{~Hz})$,
$1.41(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{s})$
(a)

(b)

(c)

(d)

62. The phase diagram of $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$ is of simple eutectic type. The utectic composition is 23.3 weight $\%$ NaCl and it freezes at $-21.1^{\circ} \mathrm{C}$. The phases present in a solution containing 10 weight $\% \mathrm{NaCl}$ at $-20^{\circ} \mathrm{C}$ are
(a) ice +NaCl solution
(b) ice + solid NaCl
(c) $\mathrm{NaCl}+$ pure water
(d) $\mathrm{NaCl}+$ saturated NaCl solution
63. Hydrogen adsorption on a platinum surface is
(a) Endothermic with positive $\Delta \mathrm{S}$ and positive $\Delta \mathrm{G}$
(b) Endothermic with positive $\Delta \mathrm{S}$ and negative $\Delta \mathrm{G}$
(c) Exothermic with negative $\Delta \mathrm{S}$ and negative $\Delta \mathrm{G}$
(d) Exothermic with positive $\Delta \mathrm{S}$ and negative $\Delta \mathrm{G}$
64. In the reversible chemical reaction taking place under standard condition at 298 K and 1 atm in a Daniel cell, $\mathrm{Zn}\left|\mathrm{Zn}^{2+}(\mathrm{aq})\right|\left|\mathrm{Cu}^{2+}(\mathrm{aq})\right| \mathrm{Cu}$
the heat change is:
(a) equal to $\Delta \mathrm{H}^{0}$
(b) equal to $T \Delta S^{0}$
(c) equal to zero
(d) equal to $\Delta \mathrm{U}^{0}$
65. The orbital $\psi=1 \mathrm{~s}_{\mathrm{H}_{\mathrm{A}}}-1 \mathrm{~s}_{\mathrm{H}_{\mathrm{B}}}$ of water belongs to the irreducible representation
(a) A_{1}
(b) B_{1}
(c) A_{2}
(d) B_{2}
66. The vibrational partition function for a molecule with fundamental frequency v is given by
(a) $\exp \left(-\frac{\hbar v}{\mathrm{k}_{\mathrm{B}} \mathrm{T}}\right)$
(b) $\left[1-\exp ^{(}\left(\frac{\hbar v}{k_{B} T}\right)\right]^{-1}$
(c) $\exp \left(-\frac{\hbar v}{\mathrm{k}_{\mathrm{B}} \mathrm{T}}\right)\left[1-\exp -\left(\frac{\hbar v}{\mathrm{k}_{\mathrm{B}} \mathrm{T}}\right)\right]^{-1}$
(d) $\exp \left(-\frac{\hbar v}{2 \mathrm{k}_{\mathrm{B}} \mathrm{T}}\right)\left[1-\exp -\left(\frac{\hbar v}{\mathrm{k}_{\mathrm{B}} \mathrm{T}}\right)\right]^{-1}$
67. The internal pressure, $\pi_{\mathrm{T}}=\mathrm{T}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{T}}\right)_{\mathrm{V}}-\mathrm{P}$ for one mole a Vander waals gas is
(a) $\frac{\mathrm{a}}{\mathrm{V}^{2}}$
(b) $\frac{a}{V^{2}}\left(\frac{R T}{V-b}\right)$
(c) Zero
(d) $\frac{\mathrm{RT}}{\mathrm{V}-\mathrm{b}}$
of $10^{-3} \mathrm{~mol}$ of this sample. Assuming the sample absorbs all the light, the quantum yield for this photochemical reaction is:
(a) 6.023
(b) 0.602
(c) 60.230
(d) 0.060
69. If standard emf of the cell,

$$
\mathrm{Cu}\left|\mathrm{Cu}^{2+}(\mathrm{aq})\right| \mid\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}, \text { aq. } \mathrm{NH}_{3} \mid \mathrm{Cu}
$$

is 0.35 , then stability constant of the formation cupric amine complex is
(a) 1.0×10^{27}
(b) 8.4×10^{5}
(c) 7.0×10^{11}
(d) 4.3×10^{13}
70. Standard entropy of crystalline carbon monoxide (in $\mathrm{J} / \mathrm{mol}$) at 0 K is around
(a) 0.03
(b) 2.50
(c) Zero
(d) 5.76
71. Matals used in automobile catalytic converters are:
(a) Pt and Pd
(b) Pt and Rh
(c) Pd and Rh
(d) Rh and Ni
Q. 72 to Q. 77 contain a Statement with a Reason and an Assertion. For each question, choose the correct answer from the following four choices.
(a) Both Reason and Assertion are correct
(b) Both Reason and Assertion are wrong
(c) Reason is correct but Assertion is wrong
(d) Reason is wrong but Assertion is correct
72. Statement: The characteristic spectroscopic feature of the quadruply bonded $\left[\operatorname{Re}_{2} \mathrm{Cl}_{8}\right]^{2-}$ is a strong royal blue colur
Reason: This is due to an absorption band in the visible region due to excitation of an electron from $\sigma^{2} \pi^{4} \delta^{2}$ ground state to $\sigma^{2} \pi^{4} \delta^{1} \delta^{* 1}$ excited state
Assertion: This transition is quantum mechanically allowed
73. Statement: For the reaction $\mathrm{L}_{\mathrm{n}} \mathrm{MH} \rightarrow \mathrm{L}_{\mathrm{n}} \mathrm{M}^{-}+\mathrm{H}^{+}$, the important factors are the strength of the $\mathrm{M}-\mathrm{H}$ bond and the nature of the ligand, L
Reason: The key here is the stability of the complex ion, $\mathrm{L}_{\mathrm{n}} \mathrm{M}^{-}$
Assertion: Weak π-bonding ligands will stabilize $\mathrm{L}_{\mathrm{n}} \mathrm{M}^{-}$and so will disfavour the forward reaction.
74. Statement: D-Glucose and D-mannose give the same phenylosazone.
[GATE 2005]
Reason: Osazone formation results in a loss of the stereocentre at C_{2} but does not affect other stereocenters.
Assertion: D-Glucose and D-mannose are enantiomers.
(a) Both Reason and Assertion are correct
(b) Both Reason and Assertion are wrong.
(c) Reason is correct but Assertion is wrong.
(d) Reason is wrong but Assertion is correct.
75. Statement: Nucleosides are stable in dilute base but undergo hydrolysis in dilute acid. [GATE 2005]

Reason: Nucleosides have an N -glycosidic linkage.
Assertion: N-Glycosidic linkage behaves like an O-glycosidic linkage which is rapidly hydrolyzed by aqueous acid but stable in aqueous base.
(a) Both Reason and Assertion are correct
(b) Both Reason and Assertion are wrong.
(c) Reason is correct but Assertion is wrong.
(d) Reason is wrong but Assertion is correct.
76. Statement : For the reaction $\mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ the rate constant is observed to decrease with temperature.
Reason : As per the proposed mechanism, the first step is the dimerization of nitric oxide which is exothermic.
Assertion : Rate law $=\mathrm{k}_{2} \mathrm{~K} .[\mathrm{NO}]_{2}\left[\mathrm{O}_{2}\right]$
(a) Both Reason and Assertion are correct
(b) Both Reason and Assertion are wrong
(c) Reason is correct but Assertion is wrong
(d) Reason is wrong but Assertion is correct.
77. Statement: Hydrogen gas gets warmer on expanding under isenthalpic condition

Reason: Joule Thomson coefficient for hydrogen is $-0.03 \mathrm{~K} / \mathrm{atm}$
Assertion: Attractive forces are the dominant intermolecular interactions in hydrogen gas at 273 K .

Common Data for Q. 78, Q. 79 and Q.80:

Vapour pressures of water above pure liquid water 24, 529 and 760 torr respectively at 298, 363 and 373 K . Use these data to answer the questions 78,79 and 80 .
78. Change in chemical potential (in $\mathrm{kJ} / \mathrm{mol}$) for the equilibrium $\mathrm{H}_{2} \mathrm{O}$ (liquid) $=\mathrm{H}_{2} \mathrm{O}$ (gas) at 298 K is
(a) 8.6
(b) -3.8
(c) 7.87
(d) 3.72
79. Aqueous solution of sodium chloride $\left(\chi_{\mathrm{NaCl}}=0.015\right)$ at 298 K is in equilibrium with a water vapour pressure (in torr) of
(a) 23.64
(b) 748.60
(c) 24.36
(d) negligible
80. Average value of enthalpy of vaporisation (in $\mathrm{kJ} / \mathrm{mol}$) of water between 363 and 373 K is
(a) 42.50
(b) 40.80
(c) -40.65
(d) -40.80

Linked Answer Q.81(a) and Q.81(b):

81.(a) As per Huckel theory, π-electron energy levels of cyclobutadiene are
(a) $\alpha+2 \beta, \alpha+\beta, \alpha-\beta, \alpha-2 \beta$
(b) $\alpha+2 \beta, \alpha-\beta, \alpha-\beta, \alpha-2 \beta$
(c) $\alpha+2 \beta, \alpha, \alpha, \alpha-2 \beta$
(d) $\alpha+\beta, \alpha-\beta, \alpha-\beta, \alpha-2 \beta$
81.(b) Given that $\beta=-75 \mathrm{~kJ} / \mathrm{mol}$, cyclobutadiene is
(a) paramagnetic and its lowest absorption energy is 150 kJ
(b) paramagnetic and its lowest absorption energy is 75 kJ
(c) diamagnetic and its lowest absorption energy is 75 kJ
(d) diamagnetic and its lowest absorption energy is 150 kJ .

Linked Answer Q.82(a) and Q.82(b):

82.(a) For the complex ion $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$, the coordination geometric will be
(a) octahedral
(b) tetragonally distorted octahedral
(c) trigonal prismatic
(d) trigonalantiprismatic
82.(b) The number of possible d-d transitions will be
(a) one
(b) two
(c) three
(d) four

Linked Answer Q.83(a) and Q.83(b):

83.(a). The following data was obtained with the GLC. Column temperature, $60^{\circ} \mathrm{C}$, inlet pressure, 1270 torr, outlet pressure, 770 torr, flow rate of carriergas at $25^{\circ} \mathrm{C}, 18 \mathrm{~mL} / \mathrm{min}$ and retention time for air, 0.30 min , the pressure drop correction factor will be
(a) 0.648
(b) 0.740
(c) 0.770
(d) 0.715
83.(b). Corrected retention volume for air (mL) will be
(a) 4.02
(b) 4.72
(c) 4.46
(d) 4.25

Linked Answer Q.84(a) and Q.84(b):
84.(a). The major product P of the following reaction is:

(a)

(b)

(c)

(d)

84.(b). Major compound Q obtained on reaction of P with NaH in DMF is:
(a)

(b)

(c)

(d)

Linked Answer Q.85(a) and Q.85(b):
85. (a) In the follwoing sequence of reactions, the major product Q is:

(a)

(b)

(c)

(d)

85.(b) The major product on sulphonation of Q with $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $160^{\circ} \mathrm{C}$ is:
(a)

(b)

(c)

(d)

