## **GATE-CY 2007**

## Section-A

(d)  $SO_3$ 



- 1. The rate of sulphonation of benzene can be significantly enhanced by the use of
  - (a) a mixture of HNO<sub>3</sub> and  $H_2SO_4$  (b) conc.  $H_2SO_4$

(c) a solution of  $SO_3$  in  $H_2SO_4$ 

2. The reaction,

+ 
$$2Na + 2C_2H_5OH$$
 +  $2C_2H_5ONa$ 

is an example of a

- (a) Birch reduction
- (c) Wolff-Kishner reduction

(b) Clemmenson reduction(d) hydride reduction

3. The major product (X) of the monobromination reaction is



4. Benzene can not be iodinated with  $I_2$  directly. However, in presence of oxidants such as HNO<sub>3</sub>, iodination is possible. The electrophile formed in this case is

(a) 
$$\begin{bmatrix} I^+ \end{bmatrix}$$
 (b)  $I^*$  (c)  $\begin{bmatrix} *\delta & \delta \\ I & OH_2 \end{bmatrix}^+$  (d)  $\begin{bmatrix} *\delta & \delta \\ I & OH_2 \end{bmatrix}^+$ 

- 5. Classify the following species as electrophiles (E) and nucleophiles (N) in routine organic synthesis
- 6. The major product obtained upon treatment of compound X with  $H_2SO_4$  at 80°C is:



| 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BaTi $[Si_3O_9]$ is a cl<br>(a) ortho silicate                                                                                                                               | ass of<br>(b) cyclic silicate                                                                                                        | (c) chain silicate                                                          | (d) sheet silicate                                    |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|
| 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The ground state term fro $V^{3+}$ ion is                                                                                                                                    |                                                                                                                                      |                                                                             |                                                       |  |  |  |
| 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a) ${}^{3}F$                                                                                                                                                                | (b) ${}^{2}F$                                                                                                                        | (c) ${}^{3}P$                                                               | (d) ${}^{2}D$                                         |  |  |  |
| 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | In photosynthesis, the predominant metal present in the reaction centre of photosystem II is<br>(a) Zn (b) Cu (c) Mn (d) Fe                                                  |                                                                                                                                      |                                                                             |                                                       |  |  |  |
| 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The octahedral comp<br>(a) Triglycinatocobalt<br>(c) Dichlorodiglycina                                                                                                       | t (III)                                                                                                                              | shows both facial and me<br>(b) Tris(etihylenediam<br>(d) Trioxalactocobalt | nine) cobalt(III)                                     |  |  |  |
| 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                              | n carbonic anhydrase is co-ordinated by three histidine and one water molecule. The reaction of $CO_2$ this enzyme is an example of  |                                                                             |                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (a) electrophilic addit<br>(c) nucleophilic addit                                                                                                                            |                                                                                                                                      | (b) electron transfer<br>(d) electrophilic subst                            | itution                                               |  |  |  |
| 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The difference in the measured and calculated magnetic moment (based on spin-orbit coupling) is obtained for                                                                 |                                                                                                                                      |                                                                             |                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (a) $Pm^{3+}$                                                                                                                                                                | (b) Eu <sup>3+</sup>                                                                                                                 | (c) $Dy^{3+}$                                                               | (d) Lu <sup>3+</sup>                                  |  |  |  |
| 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                              | For a redox reaction, $Cd^{2+} + 2e^{-} \longrightarrow Cd$ , the $(E_p)_{anodic}$ observed in cyclic voltametry at hanging mercury  |                                                                             |                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | drop electrode is $-650 \text{ mV}$ vs. SCE. The expected value for $(E_p)_{\text{cathodic}}$ is                                                                             |                                                                                                                                      |                                                                             |                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (a)-708 mV                                                                                                                                                                   | (b) -679 mV                                                                                                                          | (c) -650 mV                                                                 | (d)-621 mV                                            |  |  |  |
| 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The dimension of Pla                                                                                                                                                         |                                                                                                                                      | d T denote mass, length                                                     |                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (a) $ML^3T^{-2}$                                                                                                                                                             |                                                                                                                                      | (c) $M^2 L^{-1} T^{-1}$                                                     | (d) $M^{-1}L^2T^{-2}$                                 |  |  |  |
| 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | For a homonuclear diatomic molecule, the bonding molecular orbital is                                                                                                        |                                                                                                                                      |                                                                             |                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (a) $\sigma_u$ of lowest energy                                                                                                                                              | rgy                                                                                                                                  | (b) $\sigma_u$ of second low                                                | vest energy                                           |  |  |  |
| (a) $\sigma_u$ of lowest energy<br>(b) $\sigma_u$ of second low<br>(c) $\pi_g$ of lowest energy<br>(d) $\pi_u$ of lowest energy<br>(d) $\pi_u$ of lowest energy<br>(e) $\pi_g$ of lowest energy<br>(f) $\pi_u$ of lowest energy<br>(h) |                                                                                                                                                                              |                                                                                                                                      |                                                                             |                                                       |  |  |  |
| 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The selection rules for the appearance, of P branch in the rotational-vibrational absorption spectra of a diatomic molecule within rigid rotor-harmonic oscillator model are |                                                                                                                                      |                                                                             |                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                            |                                                                                                                                      | (b) $\Delta v = +1$ and $\Delta J = +1$                                     |                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (c) $\Delta v = +1$ and $\Delta J = -1$                                                                                                                                      |                                                                                                                                      | (d) $\Delta v = -1$ and $\Delta J = -1$                                     |                                                       |  |  |  |
| 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The $S_2$ operation on a molecule with the axis of rotation as the z axis, moves a nucleus at (x, y, z) to                                                                   |                                                                                                                                      |                                                                             |                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (a) $(-x, -y, x)$                                                                                                                                                            | (b) $(x, -y, -z)$                                                                                                                    | (c) $(-x, y, -z)$                                                           | (d) $(-x, -y, -z)$                                    |  |  |  |
| 18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The expression which                                                                                                                                                         | h represents the chemica                                                                                                             | l potential of the i <sup>th</sup> speci                                    | $ies(\mu_i)$ in a mixture $(i \neq j)$ is:            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (a) $\left(\partial E / \partial n_i\right)_{s,v,nj}$                                                                                                                        | (b) $\left(\partial H / \partial n_{i}\right)_{s,v,nj}$                                                                              | (c) $\left(\partial A / \partial n_{i}\right)_{s,v,nj}$                     | (d) $\left(\partial G / \partial n_i\right)_{s,v,nj}$ |  |  |  |
| 19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul><li>(a) It increases the ra</li><li>(b) It is not consumer</li><li>(c) It provides an alter</li></ul>                                                                    | ng statements is NOT co<br>te of a reaction<br>d in the course of a react<br>ernate pathway for the re<br>stivation energy of the re | ion                                                                         |                                                       |  |  |  |

| 20. | The value of the rate constant for the gas phase reaction $2NO_2 + F_2 \rightarrow 2NO_2F$ is 38 dm <sup>3</sup> mol <sup>-1</sup> s <sup>-1</sup> at 300K. The order of the reaction is                                                                                                                                                                                                                      |                                                                             |                                                                                 |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|
|     | (a) 0 (b) 1                                                                                                                                                                                                                                                                                                                                                                                                   | (c) 2                                                                       | (d) 3                                                                           |  |  |  |  |
|     | Q.21 – Q.75 : Carry TWO marks each.                                                                                                                                                                                                                                                                                                                                                                           |                                                                             |                                                                                 |  |  |  |  |
| 21. | Boric acid in aqueous solution in presence of glycerol behaves as a strong acid due to the formation(a) an anionioc metal-chelate(b) borate anion(c) glycerate ion(d) a charge transfer complex                                                                                                                                                                                                               |                                                                             |                                                                                 |  |  |  |  |
| 22. | Match the compounds in List I with the corres<br>List - I                                                                                                                                                                                                                                                                                                                                                     | sponding structue / prop<br>List - II                                       | erty given in List II                                                           |  |  |  |  |
|     | A. $(Ph_3P)_3$ RhCl                                                                                                                                                                                                                                                                                                                                                                                           | (i) Spinel                                                                  |                                                                                 |  |  |  |  |
|     | B. LiC <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                           | (ii) Intercalation                                                          |                                                                                 |  |  |  |  |
|     | C. $PtF_6$                                                                                                                                                                                                                                                                                                                                                                                                    | (iii) Oxidising agent                                                       | ×                                                                               |  |  |  |  |
|     | D. Ni <sub>3</sub> S <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                             | (iv) Catalyst for alken                                                     |                                                                                 |  |  |  |  |
|     | <ul><li>(a) A-iii, B-i, C-ii, D-iv</li><li>(c) A-iii, B-ii, C-i, D-iv</li></ul>                                                                                                                                                                                                                                                                                                                               | <ul><li>(b) A-iv, B-ii, C-iii, I</li><li>(d) A-iv, B-iii, C-ii, I</li></ul> |                                                                                 |  |  |  |  |
| 23. | $W(CO)_6$ reacts with MeLi to give an interme X is represented as                                                                                                                                                                                                                                                                                                                                             |                                                                             | then the $CH_2N_2$ gives a compound X.                                          |  |  |  |  |
|     | (a) WMe <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                          | (b) $(CO)_{5}$ W–Me                                                         |                                                                                 |  |  |  |  |
|     | (c) $(CO)_5$ W=C(Me)OMe                                                                                                                                                                                                                                                                                                                                                                                       | (b) $(CO)_5$ W-Me<br>(c) $(CO)_5$ W=CMe                                     |                                                                                 |  |  |  |  |
| 24. | Considering the quadrupolar nature of                                                                                                                                                                                                                                                                                                                                                                         | f M-M bond in [Re                                                           | $\left[ \frac{1}{2} \operatorname{Cl}_{8} \right]^{2-}$ , the M-M bond order in |  |  |  |  |
|     | $\left[\operatorname{Re}_{2}\operatorname{Cl}_{4}\left(\operatorname{PMe}_{2}\operatorname{Ph}\right)_{4}\right]^{+}$ and $\left[\operatorname{Re}_{2}\operatorname{Cl}_{4}\left(\operatorname{PMe}_{2}\operatorname{Ph}\right)_{4}\right]$ respectively are                                                                                                                                                  |                                                                             |                                                                                 |  |  |  |  |
|     | (a) 3.0 and 3.0 (b) 3.0 and 3.5                                                                                                                                                                                                                                                                                                                                                                               | (c) 3.5 and 3.5                                                             | (d) 3.5 and 3.0                                                                 |  |  |  |  |
| 25. | A student recorded a polarogram of 2.0 mM Cd <sup>2+</sup> solution and forgot to add KCl solution. What type of error<br>do you expect in his results?<br>(a) Only migration current will be observed<br>(b) Only diffusion current will be observed<br>(c) both migration current as well as diffusion current will be observed<br>(d) Both catalytic current as well as diffusion current will be observed |                                                                             |                                                                                 |  |  |  |  |
| 26. | The separation of trivalent lanthanide ions, Lu<br>resion using ammonia o-hydroxy isobutyrate<br>(a) Lu <sup>3+</sup> , Yb <sup>3+</sup> , Dy <sup>3+</sup> , Eu <sup>3+</sup><br>(c) Dy <sup>3+</sup> , Yb <sup>3+</sup> , Eu <sup>3+</sup> , Lu <sup>3+</sup>                                                                                                                                               | •                                                                           | n which the ions will be separated is $Lu^{3+}$                                 |  |  |  |  |
| 27. | Arrange the following metal complexes in ord                                                                                                                                                                                                                                                                                                                                                                  | ε.                                                                          |                                                                                 |  |  |  |  |
|     | $\begin{bmatrix} \mathbf{M}_{r}(\mathbf{H},\mathbf{O}) \end{bmatrix}^{2+} \begin{bmatrix} \mathbf{V}(\mathbf{H},\mathbf{O}) \end{bmatrix}^{2+}$                                                                                                                                                                                                                                                               | $\begin{bmatrix} \mathbf{N} : (\mathbf{H} \mathbf{O}) \end{bmatrix}^{2+}$   | $[T; (II o)]^{2+}$                                                              |  |  |  |  |

$$\begin{bmatrix} Mn(H_2O)_6 \end{bmatrix}^{2+} \qquad \begin{bmatrix} V(H_2O)_6 \end{bmatrix}^{2+} \qquad \begin{bmatrix} Ni(H_2O)_6 \end{bmatrix}^{2+} \qquad \begin{bmatrix} Ti(H_2O)_6 \end{bmatrix}^{2+} \\ (a) P < S < Q < R \qquad (b) P < Q < R < S \qquad (c) Q < P < R < S \qquad (d) S < R < Q < P \\ \end{bmatrix}$$

28. In the complex, 
$$\left[N_{12}^{i}(n^{2}-Cp)_{2}(CO)_{2}\right]$$
, the IR stretching frequency appears at 1857 cm<sup>-1</sup> (strong) and 1897 cm<sup>-1</sup> (weak). The valence electron count and the nature of the M-CO bond respectively are (a) 16 e<sup>-</sup>, bridging (b) 17 e<sup>-</sup>, bridging (c) 18 e<sup>-</sup>, terminal (d) 18 e<sup>-</sup>, bridging.  
29. The correct classification of  $[B, H_{1}]^{2}$ ,  $B, H_{2}$  and  $B, H_{1}$ , respectively is (a) closo, arachno, nido (b) arachno, closo, nido (c) closo, nido, arachno (d) nido, arachno, closo (d)  $N = (EtO)_{2} P(S)SH$ ;  $Y = (EtO)_{2} P(C) (b) X = (EtO)_{2} P(S)SH$ ;  $Y = (EtO)_{2} P(S)SH$ ;  $Y = (EtO)_{2} P(S) P(S) = (d) X = (EtO)_{2} P(S) P(S) = (d) X = (EtO)_{2} P(S) P(S) = (d) X = (EtO)_{2} P(S) = (d) X =$ 

Jia Sarai,Near IIT Delhi-110016

37. Zeise's salt is represented as

(a) 
$$H_2PtCl_6$$
 (b)  $[PtCl_4]^{2-}$  (c)  $[ZnCl_4]^{2-}$  (d)  $[PtCl_3(\eta^2 - C_2H_4)]^{2-}$ 

38. The catalyst used in the conversion of ethylene to acetaldehyde using Wacker process is

(a) 
$$HCo(CO)_4$$
 (b)  $[PdCl_4]^{2-}$  (c)  $V_2O_5$  (d)  $TiCl_4$  in the presence of  $Al(C_2H_5)_3$ 

39. The temperature of 54 g of water is raised from 15°C to 75°C at constant pressure. The change in the enthalpy of the system (given that  $C_{p.m}$  of water =75 JK<sup>-1</sup>mol<sup>-1</sup>) is: (a) 4.5 kJ (b) 13.5 kJ (c) 9.0 kJ (d) 18.0 kJ

40. The specific volume of liquid water is 1.001 mL  $g^{-1}$  and that of ice is 1.0907 mL  $g^{-1}$  at °C. If the heat of fusion of ice at this temperature is 333.88 J  $g^{-1}$ , the rate of change of melting point of ice with pressure in deg atm<sup>-1</sup> will be (a) -0.0075 (b) 0.0075 (c) 0.075 (d) -0.075

- 41. Given that  $E_0(Fe^{3+}, Fe) = -0.04 V$  and  $E_0(Fe^{2+}, Fe) = -0.44 V$ , the value of  $E_0(Fe^{3+}, Fe^{2+})$  is: (a) 0.76 V (b) -0.40 V (c) -0.76 V (d) 0.40 V
- 42. For the reaction  $P + Q + R \longrightarrow S$ , experimental data for the measured initial rates is given below.

| Expt. | Initial conc. P | Initial conc. Q | Initial conc. R | Initial rate          |
|-------|-----------------|-----------------|-----------------|-----------------------|
| 1     | (M)             | (M)             | (M)             | $(Ms^{-1})$           |
| 1     | 0.2             | 0.5             | 0.4             | $8.0 \times 10^{-5}$  |
| 2     | 0.4             | 0.5             | 0.4             | $3.2 \times 10^{-4}$  |
| 3     | 0.4             | 2.0             | 0,4             | $1.28 \times 10^{-3}$ |
| 4     | 0.1             | 0.25            | 1.6             | $4.0 \times 10^{-5}$  |

The order of the reaction with respect to P, Q and R respectively is:

- 43. Sucrose is converted to a mixture of glucose and fructose in a pseudo first order process under alkaline conditions. The reaction has a half life of 28.4 min. The time required for the reduction of a 8.0mM sample of sucrose to 1.0 mM is
  - (a) 56.8 min (b) 170.4 min (c) 85.2 min (d) 227.2 min
- 44. The reaction,  $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$

proceeds via the following steps

$$\begin{array}{ccc} \text{NO} + \text{NO} & \underline{k_a} & \text{N}_2\text{O}_2 \\ \text{N}_2\text{O}_2 & \underline{k_{a'}} & \text{NO} + \text{NO} \\ \text{N}_2\text{O}_2 + \text{O}_2 & \underline{k_b} & \text{NO}_2 + \text{NO}_2 \end{array}$$

The rate of this reaction is equal to

(a)  $2k_{b}[NO][O_{2}]$ (b)  $(2k_{a}k_{b}[NO]^{2}[O_{2}])/(k_{a}+k_{b}[O_{2}])$ (c)  $2k_{b}[NO]^{2}[O_{2}]$ (d)  $k_{a}[NO]^{2}[O_{2}]$ 

- 45. 40 millimoles of NaOH are added to 100 mL of a 1.2 M HA and Y M NaA buffer resulting in a solution of pH 5.30. Assuming that the volume of the buffer remains unchanged, the pH of the buffer ( $K_{HA} = 1.00 \times 10^{-5}$ ) is
  - (a) 5.30 (b) 5.00 (c) 0.30 (d) 10.30
- 46. The entropy of mixing of 10 moles of helium and 10 moles of oxygen at constant temperature and pressure, assuming both to be ideal gas, is:

(a) 
$$115.3 \text{ JK}^{-1}$$
 (b)  $5.8 \text{ JK}^{-1}$  (c)  $382.9 \text{ JK}^{-1}$  (d)  $230.6 \text{ JK}^{-1}$ 

47. The ionisation potential of hydrogen atom is 13.6 eV. The first ionistaion potential of a sodium atom, assuming that the energy of its outer electron can be represented by a H-atom like model with an effective nuclear charge of 1.84, is
(a) 46.0 eV
(b) 11.5 eV
(c) 5.1 eV
(d) 2.9 eV

48. The quantum state of a particle moving in a circular path in a plane is given by

$$\Psi_{\rm m}(\phi) = (1/\sqrt{2\pi})e^{im\phi}, m = 0, \pm 1, \pm 2, \dots$$

When a perturbation  $H_1 = P \cos \phi$  is applied (P is a constant), what will be the first order correction to the energy of the m<sup>th</sup> state

(a) 0 (b) 
$$P/(2\pi)$$
 (c)  $P/(4\pi)$ 

(i) The vibrational energy levels of a real diatomic molecule are equally spaced.

- (ii) At 500K, the reaction  $A \rightarrow B$  is spontaneous when  $\Delta H = 18.83 \text{ kJ mol}^{-1}$  and  $\Delta S = 41.84 \text{ J K}^{-1} \text{mol}^{-1}$ . (iii) The process of fluorescence involves transition from a singlet electronic state to another singlet electronic state by absorption of light.
- (iv) When a constant P is added to each of the possible energies of a system, its entropy remains unchanged.
  (a) Only i
  (b) Only ii
  (c) Both i and iii
  (d) Both ii and iv
- 50. Assuming  $H_2$  and HD molecules having equal lengths, the ratio of the rotational partition functions of these molecules, at temperature above 100K is (a) 3/8 (b) 3/4 (c) 1/2 (d) 2/3
- 51. N non-interacting molecules are distributed among three non-degenerate energy levels  $\varepsilon_0 = 0, \varepsilon_1 = 1.38 \times 10^{-21} \text{ J}$  and  $\varepsilon_2 = 2.76 \times 10^{-21} \text{ J}$ , at 100K. If the average total energy of the system at this temperature is  $1.38 \times 10^{-18} \text{ J}$ , the number of molecules in the system is: (a) 1000 (b) 1503 (c) 2354 (d) 2987
- 53. The rate constants of two reactions at temperature T are  $k_1(T)$  and  $k_2(T)$  and the corresponding activation energies are  $E_1$  and  $E_2$  with  $E_2 > E_1$ . When temperature is raised from  $T_1$  and  $T_2$ , which one of the following relations is correct?

(a) 
$$\frac{k_1(T_2)}{k_1(T_1)} = \frac{k_2(T_2)}{k_2(T_1)}$$
 (b)  $\frac{k_1(T_2)}{k_1(T_1)} > \frac{k_2(T_2)}{k_2(T_1)}$  (c)  $\frac{k_1(T_2)}{k_1(T_1)} \ge \frac{k_2(T_2)}{k_2(T_1)}$  (d)  $\frac{k_1(T_2)}{k_1(T_1)} < \frac{k_2(T_2)}{k_2(T_1)}$ 

- 54. The number of degrees of freedom for a system consisting of NaCl(s),  $Na^+(aq)$  and  $Cl^-(aq)$  at equilibrium is
  - (a) 2 (b) 3 (c) 4 (d) 5

55. Match the structures in List - I with their correct names in List - II. List - I List - II



if the concentration of both the reactants is doubled, then the rate of the reaction will (a) remain unchanged (b) quadruple (c) reduce to one fourth (d) double 59. Match the structures in List - I with the coupling constant  $\begin{bmatrix} {}^{1}H J(Hz) \end{bmatrix}$  given in List - II





(X) and (Y) respectively are

(a) <sup>1</sup>:CH<sub>2</sub> and cis 1, 2-dimethylcyclopropane

- (b) <sup>3</sup>:CH<sub>2</sub> and cis 1, 2-dimethylcyclopropane
- (c) 1:CH, and a mixture of cis/trans 1, 2-dimethylcyclopropane
- (d) <sup>3</sup>:CH<sub>2</sub> and a mixture of cis/trans 1, 2-dimethylcyclopropane

63. The major products obtained upon treating a mixture of



with a strongly acidic solution of  $H_2SO_4$  is



Match the observed pricipal absorptions in the visible spectrum shown in List - I with the bond shows this 64. absorption in List - II.



(d) S (a)P(b) Q (c) R

65.

66. The direction of rotation of the following thermal electrocyclic ring closures.



## Common data for Q.71, Q.72, Q.73:

Trans 1, 2-difluoroethylene molecule has a 2-fold rotational axis, a symmetry plane perpendicular to the rotatinal axis and an inversion centre.

- 71. The number of distinct symmetry operations that can be performed on the molecule is:
  - (a) 2 (b) 4 (c) 6 (d) 8
- 72. The number of irreducible representations of the point group of the molecule is: (a) 1 (b) 2 (c) 3 (d) 4
- 73. If two H atoms of the above molecule are also replaced by F atoms, the point group of the resultant molecule will be
  - (a)  $C_i$  (b)  $C_{2h}$  (c)  $C_{2v}$  (d)  $D_{2h}$

## Common Data for Q.74 and Q.75 :

Reactivity of ary1 amines towards electrophilic aromatic substitution is much higher than that of aliphatic amines. Hence differential reactivity of the amino group is desirable in many reactions.

74. The compound which on reacting with aniline will NOT form an acetanilide is





(a)  $1.0 \times 10^{-4}$  (b)  $2.0 \times 10^{-4}$  (c)  $3.0 \times 10^{-4}$  (d)  $4.0 \times 10^{-4}$