## GATE-CY 2008

## Section-A

## Q. 1 - Q. 20 : Carry ONE mark each.

1. The total number of isomers of $\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}(\mathrm{en}=$ ethylenediamine $)$ is
(a) 4
(b) 3
(c) 6
(d) 5
2. Metal-metal quadruple bonds are well-known for the metal
(a) Ni
(b) Co
(c) Fe
(d) Re
3. The reaction of $\mathrm{Al}_{4} \mathrm{C}_{3}$ with water leads to the formation of
(a) methane
(b) propyne
(c) propene
(d) propane
4. The correct statement about $\mathrm{C}_{60}$ is
(a) $\mathrm{C}_{60}$ is soluble in benzene
(b) $\mathrm{C}_{60}$ does not react with tert-butyllithium
(c) $\mathrm{C}_{60}$ is made up of 10 five-membered and 15 six-membered rings
(d) two adjacent five-membered rings share a common edge.
5. The lattice parameters for a monoclinic crystal are :
(a) $\mathrm{a} \neq \mathrm{b} \neq \mathrm{c} ; \alpha=\gamma=90^{\circ}$
(b) $\mathrm{a}=\mathrm{b} \neq \mathrm{c} ; \alpha=\beta \neq \gamma$
(c) $\mathrm{a} \neq \mathrm{b} \neq \mathrm{c} ; \alpha \neq \beta \neq \gamma$
(d) $\mathrm{a}=\mathrm{b}=\mathrm{c} ; \alpha=\gamma=90^{\circ}$
6. The magnetic moment of $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ corresponds to the presence of
(a) four unpaired electrons
(b) three unpaired electrons
(c) two unpaired electrons
(d) zero unpaired electrons
7. The compound that is NOT aromatic is
(a)

(b)

(c)

(d)

8. The order of stability for the following cyclic olefins is

I

II

III

IV
(a) I $<$ II $<$ III $<$ IV
(b) II $<$ III $<$ IV $<$ I
(c) II $<$ III $<$ I $<$ IV
(d) IV $<$ II $<$ I $<$ III
9. The most acidic species is:
(a)

(b)

(c)

(d)

10. The major product of the following reaction is

(a)

(b)

(c)

(d)

11. In the carbylamine reaction, $\mathrm{R}-\mathrm{X}$ is converted to $\mathrm{R}-\mathrm{Y}$ via the intermediate Z . $\mathrm{R}-\mathrm{X}, \mathrm{R}-\mathrm{Y}$ and Z , respectively, are
(a) $\mathrm{R}-\mathrm{NH}_{2}, \mathrm{R}-\mathrm{NC}$, carbene
(b) $\mathrm{R}_{-} \mathrm{NH}_{2}$, R-NC, nitrene
(c) R-NC, R-NH2, carbene
(d) R-OH, R-NC, nitrene
12. The compound that is NOT oxidized by $\mathrm{KMnO}_{4}$ is:
(a)

(b)

(c)

(d)

13. Cyanogen bromide $(\mathrm{CNBr})$ specifically hydrolyses the peptide bond formed by the C -side of
(a) methionine
(b) glycine
(c) proline
(d) serine
14. The Hammett reaction constant $\rho$ is based on
(a) the rates of alkaline hydrolysis of substituted ethyl benzoates
(b) the dissociation constants of substituted acetic acids
(c) the dissociation constants of substituted benzoicacids
(d) the dissociation constants of substituted phenols
15. The lifetime of a molecule in an excited electrenic state is $10^{-10} \mathrm{~s}$. The uncertainty in the energy $(\mathrm{eV})$ approximately is
(a) $2 \times 10^{-5}$
(b) $3 \times 10^{-6}$
(c) 0
(d) $10^{-14}$
16. For a one component system, the maximum number of phases that can coexist at equilibrium is
(a) 3
(b) 2
(c) 1
(d) 4
17. At T $=300 \mathrm{~K}$, the thermal energy $\left(\mathrm{k}_{\mathrm{B}} \mathrm{T}\right) \mathrm{in} \mathrm{cm}^{-1}$ is approximately
(a) 20000
(b) 8000
(c) 5000
(d) 200
18. For the reaction $2 \mathrm{X}_{3}=3 \mathrm{X}_{2}$, the rate of formation of $\mathrm{X}_{2}$ is:
(a) $3\left(-\mathrm{d}\left[\mathrm{X}_{3}\right] / \mathrm{dt}\right)$
(b) $\frac{1}{2}\left(-\mathrm{d}\left[\mathrm{X}_{3}\right] / \mathrm{dt}\right)$
(c) $\frac{1}{3}\left(-\mathrm{d}\left[\mathrm{X}_{3}\right] / \mathrm{dt}\right)$
(d) $\frac{3}{2}\left(-\mathrm{d}\left[\mathrm{X}_{3}\right] / \mathrm{dt}\right)$
19. The highest occupied molecular orbital of HF is:
(a) bonding
(b) antibonding
(c) ionic
(d) nonbonding.
20. The residual entropy of the asymmetric molecule $\mathrm{N}_{2} \mathrm{O}$ in its crystalline state is $5.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ at absolute zero. The number of orientations that can be adopted by $\mathrm{N}_{2} \mathrm{O}$ in its crystalline state is
(a) 4
(b) 3
(c) 2
(d) 1

## Q. 21 - Q. 85 : Carry TWO marks each.

21. The spectroscopic ground state symbol and the total number of electronic transitions of $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ are
(a) ${ }^{3} \mathrm{~T}_{1 \mathrm{~g}}$ and 2
(b) ${ }^{3} \mathrm{~A}_{2 \mathrm{~g}}$ and 3
(c) ${ }^{3} \mathrm{~T}_{1 \mathrm{~g}}$ and 3
(d) ${ }^{3} \mathrm{~A}_{2 g}$ and 2
22. The structures of the complexes $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right](\mathrm{ClO})_{4}$ in solution respectively
(a) square planar and tetrahedral
(b) octahedral and square pyramidal
(c) octahedral and trigonal bipyramidal
(d) tetrahedral and square planar
23. In biological systems, the metal ions involved in electron transport are
(a) $\mathrm{Na}^{+}$and $\mathrm{K}^{+}$
(b) $\mathrm{Zn}^{2+}$ and $\mathrm{Mg}^{2+}$
(c) $\mathrm{Ca}^{2+}$ and $\mathrm{Mg}^{2+}$
(d) $\mathrm{Cu}^{2+}$ and $\mathrm{Fe}^{3+}$
24. In a homogeneous catalytic reaction, 1.0 M of a substrate and $1.0 \mu \mathrm{M}$ of a catalyst yields 1.0 mM of a product in 10 seconds. The turnover frequency (TOF) of the reaction $\left(\mathrm{s}^{-1}\right)$ is
(a) $10^{-2}$
(b) $10^{2}$
(c) $10^{-3}$
(d) $10^{3}$
25. The expected magnetic moments of the first-row transition metal complexes and those of the lanthanide metal complexes are usually calculated using
(a) $\mu_{\text {s.o }}$ equation (s.o. $=$ spin only) for both lanthanide and transition mearcomplexes
(b) $\mu_{\mathrm{s} . \mathrm{o}}$ equation for lanthanide metal complexes and $\mu_{\mathrm{J}}$ equation for transition metal complexes
(c) $\mu_{\mathrm{s} . \mathrm{o}}$ equation for transition metal complexes and $\mu_{\mathrm{J}}$ equation for lanthanide metal complexes
(d) $\mu_{\mathrm{L}+\mathrm{S}}$ equation for transition metal complexes and $\mu_{\mathrm{s} . \mathrm{s}}^{\circ}$ equation for lanthanide metal complexes
26. The Bronsted acidity of boron hydrides follows the order
(a) $\mathrm{B}_{2} \mathrm{H}_{6}>\mathrm{B}_{4} \mathrm{H}_{10}>\mathrm{B}_{5} \mathrm{H}_{9}>\mathrm{B}_{10} \mathrm{H}_{14}$
(b) $\hat{\mathrm{B}}_{2} \mathrm{H}_{6}=\mathrm{B}_{4} \mathrm{H}_{10}>\mathrm{B}_{5} \mathrm{H}_{9}=\mathrm{B}_{10} \mathrm{H}_{14}$
(c) $\mathrm{B}_{10} \mathrm{H}_{14}>\mathrm{B}_{5} \mathrm{H}_{9}>\mathrm{B}_{4} \mathrm{H}_{10}>\mathrm{B}_{2} \mathrm{H}_{6}$
(d) $\mathrm{B}_{5} \mathrm{H}_{9}>\mathrm{B}_{4} \mathrm{H}_{10}>\mathrm{B}_{2} \mathrm{H}_{6}>\mathrm{B}_{10} \mathrm{H}_{14}$
27. NaCl is crystallised by slow evaporation of its aqueous solution at room temperature. The correct statement is
(a) The crystals will be non-stoichiometric
(b) The crystals should have Frenkel defects
(c) The percentage of defects in the crystals will depend on the concentration of the solution and its rate of evaporation
(d) The nature of defeets will depend upon the concentration of the solution and its rate of evaporation
28. $\mathrm{CaTiO}_{3}$ has a perovskite crystal structure. The coordination number of titanium in $\mathrm{CaTiO}_{3}$ is :
(a) 9
(b) 6
(c) 3
(d) 12
29. $\mathrm{If} \mathrm{CIF}_{3}$ were to be stereochemically rigid, its ${ }^{19} \mathrm{~F}$ NMR spectrum (I for ${ }^{19} \mathrm{~F}=\frac{1}{2}$ ) would be (assume that Cl is not NMR active)
(a) a doublet and a triplet
(b) a singlet
(c) a doublet and a singlet
(d) two singlets.
30. The point group of $\mathrm{NSF}_{3}$ is:
(a) $\mathrm{D}_{3 \mathrm{~d}}$
(b) $\mathrm{C}_{3 \mathrm{~h}}$
(c) $\mathrm{D}_{3 \mathrm{~h}}$
(d) $\mathrm{C}_{3 \mathrm{v}}$
31. When NiO is heated with a small amount of $\mathrm{Li}_{2} \mathrm{O}$ in air at $1200^{\circ} \mathrm{C}$, a non-stoichiometric compound $\mathrm{Li}_{\mathrm{x}} \mathrm{Ni}_{(1-\mathrm{x})} \mathrm{O}$ is formed. This compound is
(a) an n-type semiconductor containing only $\mathrm{Ni}^{1+}$
(b) an n-type semiconductor containing $\mathrm{Ni}^{1+}$ and $\mathrm{Ni}^{2+}$
(c) a p-type semiconductor containing $\mathrm{Ni}^{2+}$ and $\mathrm{Ni}^{3+}$
(d) a p-type semiconductor containing only $\mathrm{Ni}^{3+}$
32. White phosphorus, $\mathrm{P}_{4}$, belongs to the
(a) closo system
(b) nodo system
(c) arachno system
(d) hypho system
33. Among the compounds $\mathrm{Fe}_{3} \mathrm{O}_{4}, \mathrm{NiFe}_{2} \mathrm{O}_{4}$ and $\mathrm{Mn}_{3} \mathrm{O}_{4}$
(a) $\mathrm{NiFe}_{2} \mathrm{O}_{4}$ and $\mathrm{Mn}_{3} \mathrm{O}_{4}$ are normal spinels
(b) $\mathrm{Fe}_{3} \mathrm{O}_{4}$ and $\mathrm{Mn}_{3} \mathrm{O}_{4}$ are normal spinels
(c) $\mathrm{Fe}_{3} \mathrm{O}_{4}$ and $\mathrm{Mn}_{3} \mathrm{O}_{4}$ are inverse spinels
(d) $\mathrm{Fe}_{3} \mathrm{O}_{4}$ and $\mathrm{NiFe}_{2} \mathrm{O}_{4}$ are inverse spinels
34. The number of $\mathrm{M}-\mathrm{M}$ bonds in $\mathrm{Ir}_{4}(\mathrm{CO})_{12}$ are
(a) four
(b) six
(c) eight
(d) zero
35. Schrock carbenes are
(a) Triplets and nucleophilic
(b) Triplets and electrophilic
(c) Singlets and nucleophilic
(d) Singletsandelectrophilic.
36. The INCORRECT statement about linear dimethylpolysiloxane, $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiO}\right]_{n}$, is
(a) it is extremely hydrophilic
(b) it is prepared by a KOH catalysed ring-opening reaction of $\left[\mathrm{Me}_{2} \mathrm{SiO}_{4}\right.$
(c) it has a very low glass transition temperature
(d) it can be reinforced to give silicon elastomers
37. Match the entries a-d with their corresponding structures P-S
(A) bridged system
(P)

(B) atropisometric system
(Q)

(C) spiro system
(R)

(D) Fused system
(S)

(a) A-S, B-R, C-Q, D-P
(b) A-P, B-S, C-Q, D-R
(c) A-Q B-P, C-S, D-R
(d) A-S, B-R, C-P, D-Q
38. The reaction between X and Y to give Z proceeds via

(a) $4 \pi$-conrotatory opening of X followed by endo Diels-Alder cycloaddition
(b) $4 \pi$-distortary opening of X followed by endo Diels-Alder cycloaddition
(c) $4 \pi$-conrotatory opening of X followed by exo Diels-Alder cycloaddition
(d) $4 \pi$-disrotatory opening of X followed by exo Diels -Alder cycloaddition.
39. The Major products $\mathrm{P}_{1}$ and $\mathrm{P}_{2}$, respectively, in the following reaction sequenc are

(a)
 and

(b)
 and

(c)
 and

(d)
 and

40. The products Y and Z are formed, respectively, from X via

(a) hu. conrotatory opening and $\Delta$, disrotatory opening.
(b) hu, disrotatory opening and $\Delta$, controtatory opening.
(c) $\Delta$, conrotatory opening and hv , disrotatory opening.
(d) $\Delta$, disrotatory opening and hu, conrotatory opening.
41. o-Bromophenol is readily prepared from phenol using the following conditions
(a) (i) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$;
(ii) $\mathrm{Br}_{2}$;
(iii) $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}, \Delta$
(b) (i) $\mathrm{H}_{2} \mathrm{SO}_{4}, 100^{\circ} \mathrm{C}$
(ii) $\mathrm{Br}_{2}$
(iii) $\mathrm{H}_{3} \mathrm{O}^{+}, 100^{\circ} \mathrm{C}$
(c) N -Bromosuccinimide, dibenzoyl peroxide, $\mathrm{CCl}_{4}, \Delta$
(d) $\mathrm{Br}_{2} / \mathrm{FeBr}_{3}$
42. The major product of the following reaction is

(a)

(b)

(c)

(d)

43. The photochemical reaction of 2-methylpropane with $\mathrm{F}_{2}$ gives 2-fluoro-2-methylpropane and 1-fluoro-2methylpropane in 14:86 ratio. The corresponding ratio of the bromo products in the above reaction using $\mathrm{Br}_{2}$ is most likely to
(a) $14: 86$
(b) $50: 50$
(c) $1: 9$
(d) $99: 1$
44. The major product P of the following reactions is

(a)

(b)

(c)

(d)

45. The reagent X in the following reaction is

(a) $\mathrm{HO}_{2} \mathrm{CN}=\mathrm{NCO}_{2} \mathrm{H}$
(b) $\mathrm{EtO}_{2} \mathrm{CN}=\mathrm{NC}-\mathrm{CO}_{2} \mathrm{Et}$
(c) $\mathrm{EtO}_{2} \mathrm{CH}=\mathrm{NCO}_{2} \mathrm{Et}$
(d)

46. The major product of the following reactions is

(a)

(b)

(c)

(d)

47. The major product of the following reaction is:

(a)

(b)

(c)

(d)

48. In the following compound, the hydroxy group that is most readily methylated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ is:

(a) p
(b) $q$
(c) r
(d) s
49. The most appropriate sequence of reactions for carrying out the following transformations.

(a) (i) $\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}$; (ii) excess $\mathrm{SOCl}_{2} /$ pyridine ; (iii) excess $\mathrm{NH}_{3}$; (iv) $\mathrm{LiAlH}_{4}$
(b) (i) $\mathrm{O}_{3} / \mathrm{Me}_{2} \mathrm{~S}$; (ii) excess $\mathrm{SOCl}_{2} /$ pyridine; (iii) $\mathrm{LiAlH}_{4}$; (iv) excess $\mathrm{NH}_{3}$
(c) (i) $\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}$; (ii) excess $\mathrm{SOCl}_{2} /$ /pyridine; (iii) $\mathrm{LiAlH}_{4}$; (iv) excess $\mathrm{NH}_{3}$
(d) (i) $\mathrm{O}_{3} / \mathrm{Me}_{2} \mathrm{~S}$; (ii) excess $\mathrm{SOCl}_{2} /$ pyridine; (iii) excess $\mathrm{NH}_{3}$; (iv) $\mathrm{LiAlH}_{4}$
50. The number of optically active stereoisomers possible for 1,3-cyclohexanediol in its chair conformation is
(a) 4
(b) 3
(c) 2
(d) 1
51. The major product of the following reactions is

(a)

(b)

(c)

(d)

52. In the following reaction,


The absolute configurations of the chiral centres in X and Y are
(a) $2 \mathrm{~S}, 3 \mathrm{R}$ and $2 \mathrm{R}, 3 \mathrm{R}$
(b) $2 \mathrm{R}, 3 \mathrm{R}$ and $2 \mathrm{R}, 3 \mathrm{~S}$
(c) $2 \mathrm{~S}, 3 \mathrm{~S}$ and $2 \mathrm{R}, 3 \mathrm{R}$
(d) $2 \mathrm{~S}, 3 \mathrm{R}$ and $2 \mathrm{~S}, 3 \mathrm{R}$
53. The IR stretching frequencies $\left(\mathrm{cm}^{-1}\right)$ for the compound X are as follows: 3300-3500 ( $\mathrm{s}, \mathrm{br}$ ); $3000(\mathrm{~m})$; 2225 (s); 1680(s).


The correct assignment of the absorption bands is:
(a) $\bar{v}_{(O H)}=3300-3500 ; \bar{v}_{(C H)}=3000 ; \bar{v}_{(C N)}=2225 ; \bar{v}_{(C O)}=1680$
(b) $\bar{v}_{(O H)}=3000 ; \bar{v}_{(C H)}=3300-3500 ; \bar{v}_{(C N)}=2225 ; \bar{v}_{(C O)}=1680$
(c) $\bar{v}_{(O H)}=3300-3500 ; \bar{v}_{(C H)}=3000 ; \bar{v}_{(C N)}=1680 ; \bar{v}_{(C O)}=2225$
(d) $\bar{v}_{(O H)}=3000 ; \bar{v}_{(C H)}=3300-3500 ; \bar{v}_{(C N)}=1680 ; \bar{v}_{(C O)}=2225$
54. The Td point group has 24 elements and 5 classes. Given that it has two 3-dimensional irreducible representation, the number of one dimensional irreducible representation is:
(a) 1
(b) 2
(c) 0
(d) 3
55. The total number of ways in which two nonidentical spin- $1 / 2$ particles can be oriented relative to a constant magnetic field is;
(a) 1
(b) 2
(c) 3
(d) 4
56. Approximately one hydrogen atom per cubic meter is present in interstellar space. Assuming that the $\mathrm{H}-$ atom has a diameter of $10^{-10} \mathrm{~m}$, the mean free path $(\mathrm{m})$ approximately is
(a) $10^{10}$
(b) $10^{19}$
(c) $10^{24}$
(d) $10^{14}$.
57. The wavefunction of a diatomic molecule has the form $\psi=0.89 \varphi$ convalent $+0.45 \varphi_{\text {ionic }}$. The chance that both electrons of the bond will be found on the same atom in 100 inspections of the molecule approximately is
(a) 79
(b) 20
(c) 45
(d) 60
58. For the reaction given below, the relaxation time is $10^{-6} \mathrm{~s}$. Givem that $10 \%$ of A remains at equilibrium, the value of $\mathrm{k}_{1}\left(\mathrm{~s}^{-1}\right)$ is

$$
\mathrm{A} \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\rightleftharpoons}} \mathrm{~B}
$$

(a) $9 \times 10^{5}$
(b) $10^{-5}$
(c) $10^{5}$
(d) $9 \times 10^{-5}$
59. The minimum number of electrons needed to form a chemical bond between two atoms is
(a) 1
(b) 2
(c) 3
(d) 4
60. The ground state electronic energy (Hartree) of a heliam atom, neglecting the inter-electron repulsion, is
(a) -1.0
(b) -0.5
(d) -4.0
61. A particle is confined to a one-dimensionafbox of length 1 mm . If the length is changed by $10^{-9} \mathrm{~m}$, the $\%$ change in the ground state energy is
(a) $2 \times 10^{-4}$
(b) $2 \times 10^{-7} \times$
(c) $2 \times 10^{-2}$
(d) 0
62. A certain molecule can be treated as having only a doubly degenerate state lying at $360 \mathrm{~cm}^{-1}$ above the nondegenerate ground state. The approximate temperature $(\mathrm{K})$ at which $15 \%$ of the molecules will be in the upper state is
(a) 500
(b) 150
(c) 200
(d) 300
63. A box of volume V contains one mole of an ideal gas. The probability that all N particles will be found occupying one half of the volume leaving the other half empty is
(a) $1 / 2$
(b) $2 / \mathrm{N}$
(c) $(1 / 2)^{\mathrm{N}}$
(d) $(1 / 2)^{6 \mathrm{~N}}$
64. According to the Debye-Huckel limiting law, the mean activity coefficient of $5 \times 10^{-4} \mathrm{~mol} \mathrm{~kg}^{-1}$ aqueous solution of $\mathrm{CaCl}_{2}$ at $25^{\circ} \mathrm{C}$ is (the Debye-Huckel constant ' A ' can be taken to be 0.509 )
(a) 0.63
(b) 0.72
(c) 0.80
(d) 0.91
65. The operation of the commutator $[x, d / d x]$ on a function $f(x)$ is equal to
(a) 0
(b) $\mathrm{f}(\mathrm{x})$
(c) $-\mathrm{f}(\mathrm{x})$
(d) $x d f / d x$
66. If a gas obeys the equation of state $P(V-n b)=n R T$, the ratio $\frac{\left(C_{P}-C_{V}\right)}{\left(C_{P}-C_{V}\right)_{\text {ideal }}}$ is:
(a) $>1$
(b) $<1$
(c) 1
(d) (1-b)
67. Physisorbed particles undergo desorption at $27{ }^{\circ} \mathrm{C}$ with an activation energy of $16.628 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Assuming first-order process and a frequency factor of $10^{12} \mathrm{~Hz}$, the average residence time (in seconds) of the particles on the surface is
(a) $8 \times 10^{-10}$
(b) $8 \times 10^{-11}$
(c) $2 \times 10^{-9}$
(d) $1 \times 10^{-12}$
68. The rotational constants for CO in the ground and the first excited vibrational states are 1.9 and $1.6 \mathrm{~cm}^{-1}$, respectively. The \% change in the internuclear distance due to vibrational excitation is
(a) 9
(b) 30
(c) 16
(d) 0
69. The mechanism of enzyme (E) catalysed reaction of a substrate $(\mathrm{S})$ to yield product $(\mathrm{P})$ is:

$$
\mathrm{E}+\mathrm{S} \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\rightleftharpoons}}[\mathrm{ES}] \underset{\mathrm{k}_{-2}}{\stackrel{\mathrm{k}_{2}}{\rightleftharpoons}} \mathrm{E}+\mathrm{P} ; \quad \frac{-\mathrm{d}[\mathrm{~S}]}{\mathrm{dt}}=\frac{\mathrm{k}_{1} \mathrm{k}_{2}[\mathrm{~S}]_{0}+\mathrm{k}_{2} \mathrm{k}_{-2}[\mathrm{P}]}{\mathrm{k}_{1}[\mathrm{~S}]_{0}+\mathrm{k}_{-2}[\mathrm{P}]+\mathrm{k}_{-1}+\mathrm{k}_{2}}[\mathrm{E}]_{0}
$$

If a small amount of $S$ is converted to $P$, the maximum rate for the reaction will be observed for
(a) $\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \gg \mathrm{k}_{1}[\mathrm{~S}]_{0}$
(b) $\left(\mathrm{k}_{-1}+\mathrm{k}_{2}\right) \ll \mathrm{k}_{1}[\mathrm{~S}]_{0}$
(c) $\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \gg \mathrm{k}_{1}(\mathrm{~s})_{1}$
(d) $\mathrm{k}_{2} \ll \mathrm{k}_{1}$
70. The lowest energy state of the $(1 \mathrm{~s})^{2}(2 \mathrm{~s})^{1}(3 \mathrm{~s})^{1}$ configuration of Be is:
(a) ${ }^{1} S_{0}$
(b) ${ }^{1} \mathrm{D}_{2}$
(c) ${ }^{3} \mathrm{~S}_{1}$
(d) ${ }^{3} \mathrm{P}_{1}$

## Common Data for Q .71 , Q .72 and Q .73

An electron accelerated through a potential difference of $Q$ volts impinges on a nickel surface, whose (100) planes have a spacing $\mathrm{d}=351.5 \times 10^{-12} \mathrm{~m}(351.5 \mathrm{pm})$
71. The de-Broglie wavelength of the electronis $\left.\frac{\lambda\left(\frac{\mathrm{a}}{\mathrm{pm}}\right.}{\varphi}\right)^{1 / 2}$. The value of ' a ' in volts is
(a) $1.5 \times 10^{-18}$
(b) $1.5 \times 10^{6}$,
(c) $6.63 \times 10^{-5}$
(d) $2.5 \times 10^{18}$
72. The condition for observing diffraction from the nickel surface is
(a) $\lambda \gg 2 \mathrm{~d}$
(b) $\lambda$
(c) $\lambda \leq \mathrm{ad}$
(d) $\lambda \geq$ ad
73. The minimum value of $\varphi(V)$ for the electron to diffract from the (100) planes is
(a) 3000
(b) 300
(c) 30
(d) 3

## Common Data for Q. 74 and Q. 75

An iron complex $\left[\mathrm{FeL}_{6}\right]^{2+}$ ( $\mathrm{L}=$ neutral monodentate ligand) catalyses the oxidation of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$ by perbenzoic acid.
74. The formation of the organic product in the above reaction can be monitored by
(a) gas chromatography
(b) cyclic voltammetry
(c) electron spin resonance
(d) fluorescence spectroscopy
75. The oxidation state of the metal ion in the catalyst can be deducted by
(a) Atomic absorption spectroscopy
(b) Mossbauer spectroscopy
(c) HPLC
(d) Gas Chromatography

## Linked Answer type Q. 76 and Q. 77:

In the reaction, $\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{RhCl} \xrightarrow{\mathrm{CH}_{3} \mathrm{CN}} \mathrm{X}+\mathrm{Y}$
76. Compound X is
(a)

(b)

(c)

(d)

77. $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ reacts very fast with a gaseous mixture of $\mathrm{H}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$ to immediately give Z . The structure of Z is
(a) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$
(b)

(c) $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{RhCl}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)$
(d)


## Linked Answer Type for Q. 78 and Q. 79:

The reaction of $\mathrm{PCl}_{3}$ with methanol in the presence of triethylamine affords compound X. EI mass spectrum of $X$ shows a parent ion peak at $\mathrm{m} / \mathrm{z}=124$. Microanalysis of X shows that it contains $\mathrm{C}, \mathrm{H}, \mathrm{O}$ and P . The ${ }^{1} \mathrm{H}$ NMR spectrum of X shows a doublet at 4.0 ppm The separation between the two lines of the doublet is approximately $15 \mathrm{~Hz}\left(\right.$ I for ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}=\frac{1}{2}$ ).
78. Compound X is:
(a) $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{P}$
(b) $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O})$
(c) $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O})(\mathrm{OH})$
(d) $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{PH}$
79. Upon heating, compound X is converted to Y , which has the same molecular formula as that of X . The ${ }^{1} \mathrm{H}$ NMR spectrum of $Y$ shows two doublets centered at 3.0 ppm (separation of two lines $\sim 20 \mathrm{~Hz}$ ) and 4.0 ppm (separation of two lines $\sim 15 \mathrm{~Hz}$ ) respectively.
Compound Y is:
(a) $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O})(\mathrm{OH})$
(b) $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{P}(\mathrm{O})$
(c) $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}\left(\mathrm{CH}_{3}\right) \mathrm{P}(\mathrm{O})$
(d) $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}\left(\mathrm{CH}_{3}\right) \mathrm{P}(\mathrm{OH})$

## Linked Answer Type Q. 80 and Q. 81.

For butyrophenone $\left(\mathrm{PhCOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$,
80. The most probable fragmentation observed in the electron impact ionization (EI) mass spectrometry is:
(a)

(b)

(c)

(d)

81. Photoirradiation leads to the following set of products:
(a)

(b)


(c)

(d)


## Linked Answer Q. 82 and Q. 83

In the following reaction,

82. The reactive intermediate I and the product P are
(a) carbene and

(b) radical and

(c) carbene and

(d) radical and

83. The product Pshows ' $m$ ' and ' $n$ ' number of signals in ${ }^{1} \mathrm{H}$ and ${ }^{\circ} \mathrm{C}$ (NMR spectra, respectively. The values of ' $m$ ' and ' $n$ ' are
(a) $\mathrm{m}=3$ and $\mathrm{n}=2$
(b) $\mathrm{m}=2$ and $\mathrm{n}=3$
(c) $m=2$ and $n=2$
(d) $\mathrm{m}=4$ and $\mathrm{n}=3$

## Linked Answer Type Q. 84 and Q. 85:

The infrared spectrum of a diatomic molecule exhibits transitions at 2144,4262 and $6354 \mathrm{~cm}^{-1}$ corresponding to excitations from the ground state to the first, second and, third vibration states respectively.
84. The fundamental transition $\left(\mathrm{cm}^{-1}\right)$ of the diatomic molecule is at:
(a) 2157
(b) 2170
(c) 2183
(d) 2196
85. The anharmonicity constant $\left(\mathrm{cm}^{1}\right)$ of the diatomic molecule is:
(a) 0.018
(c) 0.006
(d) 0.003


