GATE-CY 2009

Section-A

(d) anti-aromatic and has no dipole moment.

the value of k_1 is 1×10^{-4} s⁻¹. If the reaction starts from X, the ratio of the concentrations of Y and Z at any given

time during the course of the reaction is found to be $\frac{[Y]}{[Z]} = \frac{1}{4}$

The value of k_2 is:

(a) $1 \times 10^{-4} s^{-1}$ (b) $2.5 \times 10^{-5} s^{-1}$ (c) $4 \times 10^{-4} s^{-1}$ (d) $4 \times 10^{4} s^{-1}$

Q.21 – Q.60 : Carry TWO marks each.

21. The correct order of v_{co} for the compounds $\left[Mo(CO)_{3}(NMe_{3})_{3}\right]$, $\left[Mo(CO)_{3}(P(OPh)_{3})_{3}\right]$, $\left[Mo(CO)_{3}(PMe_{3})_{3}\right]$, $\left[Mo(CO)_{3}(PCl_{3})_{3}\right]$ in the IR spectrum is: (a) $\left[Mo(CO)_{3}(NMe_{3})_{3}\right] > \left[Mo(CO)_{3}(P(OPh)_{3})_{3}\right] > \left[Mo(CO)_{3}(PMe_{3})_{3}\right] > \left[Mo(CO)_{3}(PCl_{3})_{3}\right]$ (b) $\left[Mo(CO)_{3}(PCl_{3})_{3}\right] > \left[Mo(CO)_{3}(NMe_{3})_{3}\right] > \left[Mo(CO)_{3}(P(OPh)_{3})_{3}\right] > \left[Mo(CO)_{3}(PMe_{3})_{3}\right]$ (c) $\left[Mo(CO)_{3}(PCl_{3})_{3}\right] > \left[M0(CO)_{3}(P(OPh)_{3})_{3}\right] > \left[Mo(CO)_{3}(PMe_{3})_{3}\right] > \left[Mo(CO)_{3}(NMe_{3})_{3}\right]$ (d) $\left[Mo(CO)_{3}(PMe_{3})_{3}\right] > \left[Mo(CO)_{3}(NMe_{3})_{3}\right] > \left[Mo(CO)_{3}(PCl_{3})_{3}\right] > \left[Mo(CO)_{3}(P(OPh)_{3})_{3}\right]$

22. 2.5 g of an iron compound upon suitable treatment yielded 0.391 g of iron (III) oxide. The percentage of iron in the compound is (a) 10.94 (b) 12.15 (c) 11.31 (d) 9.11

23. In the reaction,
$$Ph_3P \xrightarrow{MeI} [X] \xrightarrow{n-BuLi} [Y]$$
, the compounds X and Y, respectively are

(a)
$$[Ph_3P(Me)I]$$
; $Ph_3P = CH - CH_2 - CH_2 - CH_3$
(b) $[Ph_3P(Me)][I]$, $Ph_3P = CH_2$
(c) $[Ph_3P(Me)_2]$; $Ph_3P = CH_2$
(d) $[Ph_2P(Me)_2][I]$; $Ph_3P = CH_2$

(d)
$$[\operatorname{FII}_3\mathsf{r}(\operatorname{IMe})][1], \operatorname{FII}_3\mathsf{r}$$

24. The ¹H NMR spectrum of HD consists of a (a) singlet (b) 1:1 doublet (c) 1:1:1 triplet (d) 1:2:1 triplet.

25. The X-ray powder pattern of NaCl shows an intense cone at $\theta = 15.87^{\circ}$ using X-rays of wavelength 1.54×10^{-8} cm. The spacing between the planes (in Å) of NaCl crystal is (a) 1.41 (b) 2.82 (c) 4.23 (d) 5.63

26. Among the following, the isoelectronic and isostructural pair is (a) CO_2 and SO_2 (b) SO_3 and SeO_3 (c) NO_2^+ and TeO_2 (d) SiO_4^{4-} and PO_4^{3-}

32. In the reactions,

[X]
$$\leftarrow \frac{PhCHO}{H^+}$$
 D-glucose $\xrightarrow{acetone}{H^+}$ [Y]

The major products X and Y, respectively are

34. Reaction of m-methylanisole with lithium in liquid ammonia and t-butyl alcohol at -33°C generates compound X as the major product. Treatment of the compound X with dilute sulphuric acid produces compound Y as the major product. The compounds X and Y, respectively, are

- 35. The number of signals that appear in the broad-band decoupled ¹³C NMR spectrum of ortho-, meta- and para-dichlorobenzenes, respectively, are
 - (a) 3, 4 and 2 (b) 3, 3 and 2 (c) 4, 4 and 2

[GATE 2009]

(d) 3, 4 and 4

36. In the reaction sequence,

the structure of the major product Z and the overall yield for its formation from the ketone X, are

$$\delta 9.7 (1H,s), 7.8 (1H,d, J = 8.0 Hz), 7.1 - 6.8 (2H,m), 3.9 (3H,s), 2.5 (3H,s) ppm]$$

(a) $\delta 9.7 ppm$ (b) $\delta 7.8 ppm$ (c) $\delta 3.9 ppm$ (d) $\delta 2.5 ppm$

41. The half-life $(t_{1/2})$ for the hydrolysis of an ester varies with the initial concentration of the reactant $([E]_0)$ as follows:

$\left[E\right]_{0}/10^{-2} \text{ mol } L^{-1}$	5.0	4.0	3.0		
t _{1/2} / s	240	300	400		
The order of the reacti	on is:				
(a) 0	(b) 1			(c) 2	(d) 3

42. The fluorescene lifetime of a molecule in solution is 10 ns. If the fluorescence quantum yield is 0.1, the rate constant of fluorescence decay is:

(a) $1 \times 10^9 s^{-1}$ (b) $1 \times 10^8 s^{-1}$ (c) $1 \times 10^7 s^{-1}$ (d) $9 \times 10^7 s^{-1}$

43. The fundamental vibrational wavenumbers for H_2 and I_2 are 4403.2 cm⁻¹ and 214.5 cm⁻¹, respectively. The relative population of the first excited vibrational states of these two molecules compared to their respective ground states at 300 K are respectively:

(a) 6.75×10^{-1} and 3.57×10^{-1}	(b) 6.75×10^{-10} and 3.57×10^{-1}
(c) 3.57×10^{-6} and 6.75×10^{-1}	(d) 3.57×10^{-1} and 6.75×10^{-1}

44. The degeneracy of a quantum particle in a cubic box having energy four times that of the lowest energy is (a) 3 (b) 6 (c) 1 (d) 4

45. The rotational Raman spectrum of ${}^{19}F_2$ shows a series of Stokes lines at 19230.769 cm⁻¹, 19227.238 cm⁻¹ and 19223.707 cm⁻¹. The rotational constant for ${}^{19}F_2$ in GHz is: (a) 26.484 (bv) 52.968 (c) 105.936 (d) 3.531

46. The de-Broglie wavelength for a He atom travelling at 1000 ms⁻¹ (typical speed at room temperature) is

(a) $99.7 \times 10^{-12} m$ (b) $199.4 \times 10^{-12} m$ (c) $199.4 \times 10^{-18} m$ (d) $99 \times 10^{-6} m$

47. Given that the standard molar enthalpies of formation of NO(g) and NO₂(g) are, respectively, 90.3 kJ mol⁻¹ and 33.2 kJ mol⁻¹, the enthalpy change for the reaction $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ is (a) 16.6 kJ (b) -57.1 kJ (c) -114.2 kJ (d) 57.1 kJ

48. Among the following, the equilibrium which is NOT affected by an increase in pressure is

(a)
$$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$$

(b) $H_2(g) + I_2(s) \rightleftharpoons 2HI(g)$
(c) $C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$
(d) $3Fe(s) + 4H_2O(g) \rightleftharpoons Fe_3O_4(s) + 4H_2(g)$

- 49. The free energy change (ΔG) of 1 mole of an ideal gas that is compressed isothermally from 1 atm to 2 atm is: (a) RTln2 (b) -2RT (c) -RTln2 (d) 2RT
- 50. Two liquids B and C form an ideal solution. In the figure below, the vapour pressure P of this solution is shown as a function of the mole fraction, X_{B} , of component B.

Given a state of this vapour-liquid mixture whose overall composition corresponds to point E in the figure, the mole fraction of B in the vapour phase is approximately (a) 0.25 (b) 0.53 (c) 0.65 (d) 0.80

Common data for Q. 51 and Q. 52:

Treatment of $W(CO)_6$ with 1 equivalent of $Na(C_5H_5)$ in THF solution gives the ionic compound M. Reaction of M with glacial acetic acid results in product N. The ¹H NMR spectrum of N displays two singlets of relative intensity 5:1. When N is heated, hydrogen gas is evolved and O is produced; O may also be prepared by refluxing $W(CO)_6$ with cyclopentadiene and H_2 is also produced. Treatment of O with an equivalent of Br₂ produces P. (Use the 18 electron rule as your guide).

51. The compounds M and N, respectively, are

(a)
$$\left[(C_5H_5)W(CO)_3 \right]$$
Na and $\left[(C_5H_5)W(CO)_3 H \right]$
(b) $\left[(C_5H_5)W(CO)_4 \right]$ Na and $\left[(C_5H_5)W(CO)_4 H \right]$
(c) $\left[(C_5H_5)W(CO)_3 \right]$ Na and $\left[(C_5H_5)W(CO)_4 H \right]$
(d) $\left[(C_5H_5)W(CO)_4 \right]$ Na and $\left[(C_5H_5)W(CO)_3 H \right]$

52. The compounds O and P, respectively, are

(a)
$$\left[(C_5H_5)W(CO)_3 \right]_2$$
 and $\left[(C_5H_5)W(CO)_3Br \right]$
(b) $\left[(C_5H_5)W(CO)_4 \right]$ and $\left[(C_5H_5)W(CO)_2Br(THF) \right]$
(c) $\left[(C_5H_5)W(CO)_2(THF)_2 \right]$ and $\left[(C_5H_5)W(CO)_3Br \right]$
(d) $\left[(C_5H_5)W(CO)_3 \right]_2$ and $\left[(C_5H_5)W(CO)_2Br(THF) \right]$

Common data for Q. 53 and Q. 54:

An organic compound $X(C_9H_{10}O)$ exhibited the following spectral data. IR : 1680 cm⁻¹.

¹H NMR :
$$\delta 7.8(2H, d, J 7.5 Hz)$$
, $7.2(2H, d, J = 75 Hz)$, $2.7(3H, s)$ and $2.4(3H, s)$

Compound X on treatment with m-chloroperbenzoic acid produced two isomeric compounds Y (major) and Z (minor).

53. Compounds Y and Z, respectively, are

- 54. Compounds Y and Z can be differentiated by carrying out basic hydrolysis, because [GATE 2009] (a) Y produces 4-methylphenol and Z is unaffected.
 - (b) Y produces 4-methylphenol and Z produces 4-methylbenzoic acid.
 - (c) Y is unaffected and Z produces 4-methylbenzoic acid.
 - (d) Y is unaffected and Z produces 4-methylphenol.

Common data for Q. 55 and Q. 56.

Character table for the point group $C_{2\nu}$ is given below:

			20 -			
C _{2v}	E	C ₂	$\sigma_{y}(xz)$	$\sigma_y(yz)$		×
A ₁	1	1	1	1	Z	$\mathbf{x}^2, \mathbf{y}^2, \mathbf{z}^2$
A ₂	1	1	-1	-1	R _z	ху
B ₁	1	-1	1	-1	x, R _y	XZ
B ₂	1	-1	-1		y,R _x	yz

- 55. The reducible representation corresponding to the three translational degrees of freedom, $\Gamma_{u'}$ is: (a) 3, 1, 1, 1 (b) 3, -1, 1, 1 (c) 3, -1, -1, -1 (d) 3, 1, -1, -1.
- 56. The asymmetric stretching mode of the H_2O is shown below. The molecular plane is yz and the symmetry axis of H_2O is z.

This vibration transforms as the irreducible representation (a) A_1 (b) B_1 (c) A_2

Linked Answer type Q.57 and Q.58.

Triphosphazene is prepared by reacting X and Y in equimolar ratio at 120–150°C using appropriate solvents

57. The reaction X and Y, respectively, are

(a) PCl_3 ; NH_3 (b)

(b)
$$PCl_5$$
; NH_3 (c) PCl_5 ; NH_4Cl

The structure of triphosphazene is

(d) B_{2}

(d) PCl₃; NH₄Cl

58.

Statement for Linked Q.59 and Q.60:

In the reaction mechanism given, $X + Y \xrightarrow{k_1, E_{A,1}} Z \xrightarrow{k_3, E_{A,3}} P$

'k's represent rate constants, 'E_A's represent activation energies, and $k_2 >> k_3$

The overall rate constant $(k_{overall})$ for the formation of P can be expressed as 59.

(a)
$$k_1 k_3 / k_2$$
 (b) k_1 (c) $k_1 / (k_2 + k_3)$ (d) $k_1 / (k_2 - k_3)$

The overall activation energy $\left(E_{A, \text{ overall}}\right)$ for the formation of P can expressed as 60.

