Section-A

Q. 1 - Q. 20 : Carry ONE mark each.

1. The ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathrm{P}_{4} \mathrm{~S}_{3}$ consists of
(a) a singlet
(b) a doublet and a triplet
(c) a doublet and a quartet
(d) two doublets.
2. The geometry around the central atom in $\mathrm{CIF}_{4}{ }^{+}$is
(a) square planar
(b) square pyramidal
(c) octahedral
(d) trigonal bipyramidal
3. The correct statement about the $\mathrm{Cu}-\mathrm{N}$ bond distances in $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ is :
(a) all the bond distances are equal
(b) the axial bonds are longer than the equatorial ones.
(c) the equatorial bonds are longer than the axial ones.
(d) all the bond distances are unequal.
4. The reaction of phosgene with an excess of NH_{3} produces
(a) $\mathrm{HN}=\mathrm{C}=\mathrm{O}$
(b) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{C}(\mathrm{Cl})=\mathrm{O}$
(c) $\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{C}=\mathrm{O}$
(d) $\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{CCl}_{2}$
5. The number of metal - metal bonds in $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\right]_{2}$ is
(a) zero
(b) one
(c) two
(d) three
6. The coordination number of the Ba^{2+} ions in barium fluoride is 8 . The coordination number of the fluoride ion is:
(a) 8
(b) 4
(c) 1
(d) 2 .
7. In the transformation of oxyhaemoglobin to deoxyhaemoglobin
(a) Fe^{2+} in the low spin state changes to Fe^{2+} in the high spin state
(b) Fe^{2+} in the low spin state changés Fe^{3+} in the low spin state.
(c) Fe^{2+} in the high spin state changes to Fe^{2+} in the low spin state
(d) Fe^{2+} in the high spin state changes to Fe^{3+} in the high spin state.
8. For the compound

the stereochemical notations are
(a) $2 \mathrm{Z}, 4 \mathrm{R}$
(b) $2 \mathrm{Z}, 4 \mathrm{~S}$
(c) $2 \mathrm{E}, 4 \mathrm{R}$
(d) $2 \mathrm{E}, 4 \mathrm{~S}$
9. The compound

(a) aromatic and has high dipole moment
(b) aromatic and has no dipole moment
(c) non-aromatic and has high dipole moment
(d) anti-aromatic and has no dipole moment.
10. In the reaction,

the major product X is:
(a)

(b)

(c)

(d)

11. In the reaction

the major products X and Y are
(a)
 and

(b)
 and

(c)

(d) None of these
 the major product X is:
(a)

(b)

(c) P

(d)

12. The most suitable reagent combination to bring out the following transformation

(a) PhCOCl and pyridine
(b) DCC and PhCOOH
(c) $\mathrm{PhBr}, \mathrm{CO}$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$
(d) EtOOC-N=N-COOEt, PPh_{3} and PhCOOH
13. In the two steps reaction sequence :

the major product Y is :
(a)

(b)

(c)

14. Among the following the system that would require the least amount of thermal energy to bring its temperature to $80^{\circ} \mathrm{C}$ is:
(a) 200 gm of water at $40^{\circ} \mathrm{C}$
(b) 100 gm of water at $20^{\circ} \mathrm{C}$
(c) 150 gm of water at $50^{\circ} \mathrm{C}$
(d) 300 gm of water at $30^{\circ} \mathrm{C}$.
15. Among the following, the reaction that is accompanied by a decrease in the entropy is
(a) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
(b) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(c) $\mathrm{PCl}_{5}(\mathrm{~s}) \rightarrow \mathrm{PCl}_{3}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g})$
(d) $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
16. The number of degrees of freedom of a system consisting of solid sucrose in equilibrium with an aqueous solution of sucrose is
(a) 0
(b) 1
(c) 2
(d) 3
17. The lowest allowed energy is equal to zero for
(a) the hydrogen atom
(b) a rigid rotor
(c) a harmonic oscillator
(d) a particle in a 3-dimensional box
18. According to the Debye-Hückel limiting law, if the concentration of a dilute aqueous solution of KCl is increased 4-fold, the value of $\ln \gamma_{ \pm}\left(\gamma_{ \pm}\right.$is the molal mean ionic activity coefficient) will
(a) decrease by a factor of 2
(b) increase by a factor of 2
(c) decrease by a factor of 4
(d) increase by a factor of 4 .
19. For the parallel first order reaction shown below

the value of k_{1} is $1 \times 10^{-4} \mathrm{~s}^{-1}$. If the reaction starts from X , the ratio of the concentrations of Y and Z at any given time during the course of the reaction is found to be $\frac{[\mathrm{Y}]}{[\mathrm{Z}]}=\frac{1}{4}$
The value of k_{2} is:
(a) $1 \times 10^{-4} \mathrm{~s}^{-1}$
(b) $2.5 \times 10^{-5} \mathrm{~s}^{-1}$
(c) $4 \times 10^{-4} \mathrm{~s}^{-1}$
(d) $4 \times 10^{4} \mathrm{~s}^{-1}$
Q. 21 - Q. 60 : Carry TWO marks each.
20. The correct order of $v_{\text {co }}$ for the compounds $\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{NMe}_{3}\right)_{3}\right],\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{3}\right]$, $\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)_{3}\right],\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{PCl}_{3}\right)_{3}\right]$ in the IR spectrum is:
(a) $\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{NMe}_{3}\right)_{3}\right]>\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{3}\right]>\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)_{3}\right]>\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{PCl}_{3}\right)_{3}\right]$
(b) $\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{PCl}_{3}\right)_{3}\right]>\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{NMe}_{3}\right)_{3}\right]>\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{3}\right]>\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)_{3}\right]$
(c) $\left.\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{PCl}_{3}\right)_{3}\right]>\left[\mathrm{M} 0(\mathrm{CO})_{3}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{3}\right]>\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)_{3}\right]>\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{NMe}_{3}\right)_{3}\right]$
(d) $\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)_{3}\right]>\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{NMe}_{3}\right)_{3}\right)>\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{PCl}_{3}\right)_{3}\right]>\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{3}\right]$
21. 2.5 g of an iron compound upon suitable treat ment yielded 0.391 g of iron (III) oxide. The percentage of iron
in the compound is
(a) 10.94
(b) 12.15
(c) 11.31
(d) 9.11
22. In the reaction, $\left.\mathrm{Ph}_{3} \mathrm{P} \xrightarrow{\mathrm{MeI}} \mathbb{X}\right] \xrightarrow{\mathrm{n}-\mathrm{BuLi}}[\mathrm{Y}]$, the compounds X and Y , respectively are
(a) $\left[\mathrm{Ph}_{3} \mathrm{P}(\mathrm{Me}) \mathrm{I}\right] ; \mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(b) $\left[\mathrm{Ph}_{3} \mathrm{P}(\mathrm{Me})\right][\mathrm{I}] ; \mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$
(c) $\left[\mathrm{Ph}_{3} \mathrm{P}(\mathrm{Me})_{2}\right] ; \mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$
(d) $\left[\mathrm{Ph}_{3} \mathrm{P}(\mathrm{Me})\right][\mathrm{I}] ; \mathrm{Ph}_{3} \mathrm{P}$
23. The ${ }^{1} \mathrm{H}$ NMR spectrum of HD consists of a
(a) singlet
(b) $1: 1$ doublet
(c) $1: 1: 1$ triplet
(d) 1:2:1 triplet.
24. The X -ray powder pattern of NaCl shows an intense cone at $\theta=15.87^{\circ}$ using X -rays of wavelength $1.54 \times 10^{-8} \mathrm{~cm}$. The spacing between the planes (in \AA) of NaCl crystal is
(a) 1.41
(b) 2.82
(c) 4.23
(d) 5.63
25. Among the following, the isoelectronic and isostructural pair is
(a) CO_{2} and SO_{2}
(b) SO_{3} and SeO_{3}
(c) NO_{2}^{+}and TeO_{2}
(d) SiO_{4}^{4-} and PO_{4}^{3-}
26. Two samples have been given to you: $\left[\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. Aphysical method that can be used to identify these compounds unambiguously is
(a) HPLC
(b) magnetic susceptibility
(c) ${ }^{13}$ C NMR spectroscopy
(d) Mössbauer spectroscopy
27. In the reaction $\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{SO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)$, the conjugate acid-base pairs are
(a) HSO_{4}^{-}and $\mathrm{SO}_{4}^{2-} ; \mathrm{H}_{2} \mathrm{O}$ and OH^{-}
(b) HSO_{4}^{-}and $\mathrm{H}_{3} \mathrm{O}^{+} ; \mathrm{SO}_{4}^{2-}$ and OH^{-}
(c) HSO_{4}^{-}and $\mathrm{OH}^{-} ; \mathrm{SO}_{4}^{2-}$ and $\mathrm{H}_{2} \mathrm{O}$
(d) HSO_{4}^{-}and $\mathrm{OH}^{-} ; \mathrm{SO}_{4}^{2-}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$
28. Designate the following complexes X, Y and Z as inert or labile:
$\mathrm{X}=\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}, \quad \mathrm{Y}=\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$,
$\mathrm{Z}=\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
(a) X and Y are inert; Z is labile
(b) X and Z are labile; Y is inert.
(c) X is inert; Y and Z are labile
(d) X is labile; Y and Z are inert.
29. In the reaction sequence :

X and Y, respectively, are
(a)
 and

(b)
 and

(c)

(d)
 and

30. The major product X (based on the preferred conformation) in the reaction

is
(a)

(b)

(c)

(d)

31. In the reactions,

$$
[\mathrm{X}] \underset{\mathrm{H}^{+}}{\stackrel{\mathrm{PhCHO}}{\gtrless}} \text { D-glucose } \xrightarrow[\mathrm{H}^{+}]{\text {acetone }}[\mathrm{Y}]
$$

The major products X and Y , respectively are
(a)

(b)
 and

 and

(d)

33. In the reaction

the major product X is
(a)

(b)

(c)

(d)

34. Reaction of m-methylanisole with lithium in liquid ammonia and t-butyl alcohol at $-33^{\circ} \mathrm{C}$ generates compound X as the major product. Treatment of the compound X with dilute sulphuric acid produces compound Y as the major product. The compounds X and Y , respectively, are
(a)

and

(b)

and

(c)
 and

(d)
 and

35. The number of signals that appear in the broad-band decoupled ${ }^{13} \mathrm{C}$ NMR spectrum of ortho-, meta- and para-dichlorobenzenes, respectively, are
(a) 3, 4 and 2
(b) 3, 3 and 2
(c) 4, 4 and 2
(d) 3, 4 and 4
36. In the reaction seqeunce,
[GATE 2009]

the structure of the major product Z and the overall yield for its formation from the ketone X , are
(a)

(b)

(c)

(d)

37. In the reaction sequence

the major product respectively, are:
(a)

(b)
 and

(c)

(d)
 and

38. In the reaction sequence the major products X and Y , respectively are

(a)

(b)

(c)

(d)

and

39. In the reaction sequence

The major products X and Y , respectively are
(a)

(b)

(c)
 and

(d)

40. In the photochemical reaction

formation of the compound X can be inferred by the disappearance of the ${ }^{1} \mathrm{H}$ NMR signal at ${ }^{1} \mathrm{H}$ NMR spectrum of the starting material:
$\delta 9.7(1 \mathrm{H}, \mathrm{s}), 7.8(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.1-6.8(2 \mathrm{H}, \mathrm{m}), 3.9(3 \mathrm{H}, \mathrm{s}), 2.5(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm}]$
(a) $\delta 9.7 \mathrm{ppm}$
(b) $\delta 7.8 \mathrm{ppm}$
(c) $\delta 3.9 \mathrm{ppm}$
(d) $\delta 2.5 \mathrm{ppm}$
41. The half-life $\left(\mathrm{t}_{1 / 2}\right)$ for the hydrolysis of an ester varies with the initial concentration of the reactant $\left([\mathrm{E}]_{0}\right)$ as follows:

$[\mathrm{E}]_{0} / 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$	5.0	4.0	3.0
$\mathrm{t}_{1 / 2} / \mathrm{s}$	240	300	400

The order of the reaction is:
(a) 0
(b) 1
(c) 2
(d) 3
42. The fluorescene lifetime of a molecule in solution is 10 ns . If the fluorescence quantum yield is 0.1 , the rate constant of fluorescence decay is:
(a) $1 \times 10^{9} \mathrm{~s}^{-1}$
(b) $1 \times 10^{8} \mathrm{~s}^{-1}$
(c) $1 \times 10^{7} \mathrm{~s}^{-1}$
(d) $9 \times 10^{7} \mathrm{~s}^{-1}$
43. The fundamental vibrational wavenumbers for H_{2} and I_{2} are $4403.2 \mathrm{~cm}^{-1}$ and $214.5 \mathrm{~cm}^{-1}$, respectively. The relative population of the first excited vibrational states of these two molecules compared to their respective ground states at 300 K are respectively:
(a) 6.75×10^{-1} and 3.57×10^{-1}
(b) 6.75×10^{-10} and 3.57×10^{-1}
(c) 3.57×10^{-6} and 6.75×10^{-1}
(d) 3.57×10^{-1} and 6.75×10^{-1}
44. The degeneracy of a quantum particle in a cubic box having energy four times that of the lowest energy is
(a) 3
(b) 6
(c) 1
(d) 4
45. The rotational Raman spectrum of ${ }^{19} \mathrm{~F}_{2}$ shows a series of Stokes lines at $19230.769 \mathrm{~cm}^{-1}, 19227.238 \mathrm{~cm}^{-1}$ and $19223.707 \mathrm{~cm}^{-1}$. The rotational constant for ${ }^{19} \mathrm{~F}_{2}$ in GHz is:
(a) 26.484
(bv) 52.968
(c) 105.936
(d) 3.531
46. The de-Broglie wavelength for a He atom travelling at $1000 \mathrm{~ms}^{-1}$ (typical speed at room temperature) is
(a) $99.7 \times 10^{-12} \mathrm{~m}$
(b) $199.4 \times 10^{-12} \mathrm{~m}$
(c) $199.4 \times 10^{-18} \mathrm{~m}$
(d) $99 \times 10^{-6} \mathrm{~m}$
47. Given that the standard molar enthalpies of formation of $\mathrm{NO}(\mathrm{g})$ and $\mathrm{NO}_{2}(\mathrm{~g})$ are, respectively, $90.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $33.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the enthalpy change for the reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ is
(a) 16.6 kJ
(b) -57.1 kJ
(c) -114.2 kJ
(d) 57.1 kJ
48. Among the following, the equilibrium which is NOT affected by an increase in pressure is
(a) $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
(b) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
(c) $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
(d) $3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$
49. The free energy change $(\Delta \mathrm{G})$ of 1 mole of an ideal gas that is compressed isothermally from 1 atm to 2 atm is:
(a) $R T \ln 2$
(b) -2 RT
(c) $-\mathrm{RT} \ln 2$
(d) 2 RT
50. Two liquids B and C form an ideal solution. In the figure below, the vapour pressure P of this solution is shown as a function of the mole fraction, X_{B}, of component B.

Given a state of this vapour-liquid mixture whose overall composition corresponds to point E in the figure, the mole fraction of B in the vapour phase is approximately
(a) 0.25
(b) 0.53
(c) 0.65
(d) 0.80

Common data for Q. 51 and Q. 52:

Treatment of $\mathrm{W}(\mathrm{CO})_{6}$ with 1 equivalent of $\mathrm{Na}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ in THF solution gives the ionic compound M . Reaction of M with glacial acetic acid results in product N . The ${ }^{1} \mathrm{H}$ NMR spectrum of N displays two singlets of relative intensity $5: 1$. When N is heated, hydrogen gas is evolved and O is produced; O may also be prepared by refluxing $\mathrm{W}(\mathrm{CO})_{6}$ with cyclopentadiene and H_{2} is also produced. Treatment of O with an equivalent of Br_{2} produces P . (Use the 18 electron rule as your guide).
51. The compounds M and N , respectively, are
(a) $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO})_{3}\right] \mathrm{Na}$ and $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO})_{3} \mathrm{H}\right]$
(b) $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO})_{4}\right] \mathrm{Na}$ and $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO})_{4} \mathrm{H}\right]$
(c) $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO})_{3}\right] \mathrm{Na}$ and $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO})_{4} \mathrm{H}\right]$
(d) $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO})_{4}\right] \mathrm{Na}$ and $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO})_{3} \mathrm{H}\right]$
52. The compounds O and P , respectively, are
(a) $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO})_{3}\right]_{2}$ and $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO})_{3} \mathrm{Br}\right]$
(b) $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO})_{4}\right]$ and $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO})_{2} \operatorname{Br}(\mathrm{THF})\right]$
(c) $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO})_{2}(\mathrm{THF})_{2}\right]$ and $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO})_{3} \mathrm{Br}\right]$
(d) $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO})_{3}\right]_{2}$ and $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO}) \mathrm{Br}(\mathrm{THF})\right]$

Common data for Q. 53 and Q. 54:
An organic compound $\mathrm{X}\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}\right)$ exhibited the following spectral data.
IR : $1680 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR : $\delta 7.8(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.5 \mathrm{~Hz}), 7.2(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=75 \mathrm{~Hz}), 2.7(3 \mathrm{H}, \mathrm{s})$ and $2.4(3 \mathrm{H}, \mathrm{s})$
Compound X on treatment with m -chloroperbenzoic acid produced two isomeric compounds Y (major) and Z (minor).
53. Compounds Y and Z, respectively, are

(a)
 and

(b)
 and

(c)

(d)

54. Compounds Y and Z can be differentiated by carrying out basic hydrolysis, because
[GATE 2009]
(a) Y produces 4-methylphenol and Z is unaffected.
(b) Y produces 4-methylphenol and Z produces 4-methylbenzoic acid.
(c) Y is unaffected and Z produces 4-methylbenzoic acid.
(d) Y is unaffected and Z produces 4 -methylphenol.

Common data for Q. 55 and Q. 56.

Character table for the point group $\mathrm{C}_{2 \mathrm{v}}$ is given below:

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{\mathrm{y}}(\mathrm{xz})$	$\sigma_{\mathrm{y}}(\mathrm{yz})$		
A_{1}	1	1	1	1	x_{z}	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

55. The reducible representation corresponding to the three translational degrees of freedom, $\Gamma_{u^{\prime}}$ is:
(a) $3,1,1,1$
(b) $3,-1,1,1$
(c) $3,-1,-1,-1$
(d) $3,1,-1,-1$.
56. The asymmetric stretching mode of the $\mathrm{H}_{2} \mathrm{O}$ is shown below. The molecular plane is yz and the symmetry axis of $\mathrm{H}_{2} \mathrm{O}$ is z .

This vibration transforms as the irreducible representation
(a) A_{1}
(b) B_{1}
(c) A_{2}
(d) B_{2}

Linked Answer type Q. 57 and Q.58.

Triphosphazene is prepared by reacting X and Y in equimolar ratio at $120-150^{\circ} \mathrm{C}$ using appropriate solvents
57. The reaction X and Y , respectively, are
(a) $\mathrm{PCl}_{3} ; \mathrm{NH}_{3}$
(b) $\mathrm{PCl}_{5} ; \mathrm{NH}_{3}$
(c) $\mathrm{PCl}_{5} ; \mathrm{NH}_{4} \mathrm{Cl}$
(d) $\mathrm{PCl}_{3} ; \mathrm{NH}_{4} \mathrm{Cl}$
58. The structure of triphosphazene is
(a)

(b)

(c)

(d)

Statement for Linked Q. 59 and Q.60:

In the reaction mechanism given, $X+Y \underset{k_{2}, E_{A, 2}}{\stackrel{k_{1}, E_{\mathrm{E}_{1}}}{\rightleftharpoons}} \mathrm{Z} \xrightarrow{\mathrm{k}_{3}, \mathrm{E}_{\mathrm{A}, 3}} \mathrm{P}$
' k 's represent rate constants, ' E_{A} 's represent activation energies, and $k_{2} \gg k_{3}$
59. The overall rate constant $\left(\mathrm{k}_{\text {overall }}\right)$ for the formation of P can be expressed as
(a) $\mathrm{k}_{1} \mathrm{k}_{3} / \mathrm{k}_{2}$
(b) k_{1}
(c) $\mathrm{k}_{1} /\left(\mathrm{k}_{2}+\mathrm{k}_{3}\right)$
(d) $\mathrm{k}_{1} /\left(\mathrm{k}_{2}-\mathrm{k}_{3}\right)$
60. The overall activation energy $\left(\mathrm{E}_{\mathrm{A}, \text { overall }}\right)$ for the formation of P can expressed as
(a) $\frac{\mathrm{E}_{\mathrm{A}, 1} \cdot \mathrm{E}_{\mathrm{A}, 3}}{\mathrm{E}_{\mathrm{A}, 2}}$
(b) $\mathrm{E}_{\mathrm{A}, 1}$
(c) $\mathrm{E}_{\mathrm{A}, 1}+\mathrm{E}_{\mathrm{A}, 3}-\mathrm{E}_{\mathrm{A}, 2}$ (d) $\frac{\mathrm{E}_{\mathrm{A}, 1}}{\mathrm{E}_{\mathrm{A}, 2}+\mathrm{E}_{\mathrm{A}, 3}}$

