GATE-CY 2011

Section-A

9.

In the following reaction

T

(b) II

The major product [X] is:

Π

(c) III

Ш

IV

(d) IV

12. The sequence of an mRNA molecule produced from a DNA template strand with the composition 5'- AGCTACACT - 3' is

(c)

(d)

- (a) 5'-AGUGUAGCU-3'
 (b) 5'-UCGAUGUGA-3'

 (c) 5'-AGTGTAGCT-3'
 (d) 5'-TCGATGTGA-3'
- 13. In the following reaction,

11.

(a)

14. The structure of the dipeptide Ala-Pro derived from the natural amino acids is:

25. According to conventional transition state theory, for elementary bimolecular reactions, the molar entropy of activation $\Delta S^{0^{\dagger}_{\tau}}$ is:

(a) Positive (b) Zero (c) Negative

(d) Positive for endothermic and negative for exothermic reactions.

Q.26 – Q.55 : Carry TWO marks each.

- 26. The crystal field stabilization energy (CFSE) value for $[Ti(H_2O)_6]^{3+}$ that has an absorption maximum at 492 nm is: (a) 20, 325 cm⁻¹ (b) 12, 195 cm⁻¹ (c) 10, 162 cm⁻¹ (d) 8, 130 cm⁻¹
- 27. For Et_2AIX (X = PPh₂⁻, Ph⁻, Cl⁻ and H⁻), the tendency towards dimeric structure follows the order
 - (a) $PPh_2^- > Cl^- > H^- > Ph^-$ (b) $Cl^- > PPh_2^- > H^- > Ph^-$
 - (c) $Ph^- > H^- > Cl^- > PPh_2^-$ (d) $H^- > Ph^- > PPh_2^- > Cl^-$

28. In the isoelectronic series, VO_4^{3-} , CrO_4^{2-} and MnO_4^{-} , all members have intense charge transfer (CT) transitions. The **INCORRECT** statement is

- (a) CT transitions are attributed to excitations of electrons from ligand (σ) to metal (e)
- (b) MnO_4^- exhibits charge transfer at shortest wavelength among the three
- (c) The wavelength of transitions increase in the order $VO_4^3 < CrO_4^{2-} < MnO_4^{-}$
- (d) The charge on metal nucleus increases in the order $VO_4^{3-} < CrO_4^{2-} < MnO_4^{-}$
- 29. The increasing order of wavelength of absorption for the complex ions

(i)
$$\left[\operatorname{Cr} \left(\operatorname{NH}_{3} \right)_{6} \right]^{3+}$$
 (ii) $\left[\operatorname{Cr} \operatorname{Cl}_{6} \right]^{3-}$ (iii) $\left[\operatorname{Cr} \left(\operatorname{OH}_{2} \right)_{6} \right]^{3+}$ (iv) $\left[\operatorname{Cr} \left(\operatorname{CN} \right)_{6} \right]^{3-}$, is
(a) iv < ii < i < iii (b) iv < iii < ii < ii (c) iv < i < iii < ii (d) ii < iii < i < iv

- 30. The total number of metal-metal bonds in $\operatorname{Ru}_3(\operatorname{CO})_{12}$ and $\operatorname{Co}_4(\operatorname{CO})_{12}$, respectively, is (a) 3 and 6 (b) 4 and 5 (c) zero and 4 (d) 3 and 4
- 31. According to VSEPR theory the shapes of $[SF_2Cl]^+$ and $[S_2O_4]^{2-}$ should be (a) trigonal planar for $[S_2O_4]^{2-}$ and trigonal pyramidal for $[SF_2Cl]^+$ (b) both trigonal planar (c) trigonal pyramidal for $[S_2O_4]^{2-}$ and trigonal planar for $[SF_2Cl]^+$
 - (d) both trigonal pyramidal
- 32. The product of the reaction between $CH_3Mn(CO)_5$ and ¹³CO is: (a) $(CH_3^{-13}CO)Mn(CO)_5$ (b) $(CH_3CO)Mn(CO)_4(^{13}CO)$ (c) $(^{13}CH_3CO)Mn(CO)_5$ (d) $CH_3Mn(CO)_4$
- 33. The correct pair of ¹H and ³¹P NMR spectral patterns for $C(H)(F)(PCl_2)_2$ is:

34. In the following reaction

the major product [X] is:

the major product [X] is:

37. The most appropriate sequence of reactions for carrying out the following conversion

Jia Sarai, Near IIT Delhi-110016

43. For the process

 $1 \operatorname{Ar}(300 \mathrm{K}, 1 \mathrm{bar}) \longrightarrow 1 \operatorname{Ar}(200 \mathrm{K}, 10 \mathrm{bar})$ assuming ideal gas behavior, the change in molar entropy is: (a) $-27.57 \text{ J K}^{-1} \text{ mol}^{-1}$ (b) $+27.57 \text{ J K}^{-1} \text{ mol}^{-1}$ (c) -24.20 J K⁻¹ mol⁻¹ (d) +24.20 J K⁻¹ mol⁻¹

44. The wave function for a quantum mechanical particle in a 1-dimensional box of length 'a' is given by

$$\psi = A \sin \frac{\pi x}{a}$$

The value of 'A' for a box of length 200 nm is

(a)
$$4 \times 10^4 \,(\text{nm})^2$$
 (b) $10\sqrt{2} \,(\text{nm})^{\frac{1}{2}}$ (c) $\sqrt{2}/10 \,(\text{nm})^{-\frac{1}{2}}$ (d) $0.1 \,(\text{nm})^{-1/2}$

45. For 1 mole of a monoatomic ideal gas, the relation between pressure (p), volume (V) and average molecular kinetic energy $(\overline{\varepsilon})$ is

(a)
$$p = \frac{N_A \overline{\epsilon}}{V}$$
 (b) $p = \frac{N_A \overline{\epsilon}}{3V}$ (c) $p = \frac{2N_A \overline{\epsilon}}{3V}$ (d) $p = \frac{2N_A}{3V\overline{\epsilon}}$

For a 1 molal aqueous NaCl solution, the mean ionic activity coefficient (γ_{+}) and the Deby-Huckel 46. Limiting Law constant (A) are related as

(a) $\log \gamma_{+} = \sqrt{2} A$ (b) $\log \gamma_{\perp} = -\sqrt{2} A$ (c) $\gamma_{+} = 10^{A}$ (d) γ 47. For the concentration cell $M \mid M^{+}(aq, 0.01 \text{ mol } dm^{-3}) \mid M^{+}(aq, 0.1 \text{ mol } dm^{-3}) \mid M$ the EMF (E) of the cell at a temperature (T) equals (a) $2.303 \frac{\text{RT}}{\text{F}}$

(c)
$$E_{M^+/M}^0 + 2.303 \frac{RT}{F}$$

Commond Data Questions:

Commond data for Q.48 and Q.49: A hypothetical molecule XY has the following properties Reduced mass: 2×10^{-26} kg

X–Y bond length: 100 pm

Force constant of the bond: 8×10² N.m⁻¹

- The frequency of radiation (in cm^{-1} units) required to vibrationally excite the molecule from v = 0 to v =48. 1 state is b) 2123.2 (d) 840.0
 - (a) 3184.8

(c) 061.6

The frequency of radiation (in cm^{-1} units) required to rotationally excite the molecule from J = 0 to J = 1 49. state is (a) 1.4 (b) 2.8(c) 3.2(d) 3.6

Common data for Q.50 and Q.51:

Na₂HPO₄ and NaH₂PO₄ on heating at high temperature produce a chain sodium pentaphosphate quantitatively.

- 50. The ideal molar ratio of Na_2HPO_4 to NaH_2PO_4 is: (b) 1:4(a) 4 : 1 (c) 3:2(d) 2:3
- 51. The total charge on pentaphosphate anion is: (a) - 5(b) -3(c) - 7

(d) - 9

Linked Answer Q.52 and Q.53:

The decomposition of ozone to oxygen $2O_3(g) \rightarrow 3O_2(g)$ occurs by mechanism

(i)
$$M(g) + O_3(g) \xrightarrow{k_1} O_2(g) + O(g) + M(g),$$
 $E_{a,1}$
(ii) $O_2(g) + O(g) + M(g) \xrightarrow{k_2} M(g) + O_3(g),$ $E_{a,2}$
(iii) $O(g) + O_3(g) \xrightarrow{k_3} 2O_2(g),$ $E_{a,3}$

where, M is the catalyst molecule.

 k_{i} ' are rate constants and $k_{a,i}$'s the activation energies for the elementary steps,

52. Under the steady state approximation for the intermediates, the rate of decomposition of ozone, $-\frac{d[O_3]}{dt}$, is

(a)
$$\frac{2k_{1}k_{3}[O_{3}]^{2}[M]}{k_{2}[O_{2}][M] + k_{3}[O_{3}]}$$
(b)
$$\frac{2k_{1}k_{3}[O_{3}]^{2}[M]}{k_{2}[O_{2}][M] - k_{3}[O_{3}]}$$
(c)
$$\frac{2k_{2}k_{3}[O_{3}][M]}{k_{2}[O_{2}][M] + k_{3}[O_{3}]}$$
(d)
$$\frac{2k_{1}k_{2}[O_{3}]^{2}[M]}{k_{2}[O_{2}][M] - k_{3}[O_{3}]}$$

53. Assuming $k_3[O_3] \gg k_2[O_2][M]$, the activation of the overall reaction is

(a)
$$\frac{E_{a,1}E_{a,3}}{E_{a,2}}$$
 (b) $E_{a,3} + E_{a,1} - E_{a,2}$ (c) $E_{a,2}$ (d) $E_{a,1}$

Statement for Linked Answer Q.54 and Q.55:

A ketone on treatment with bromine in methanol gives the corresponding monobromo compound[X] having molecular formula C_5H_9BrO . The compound [X] when treated with NaOMe in MeOH produces [Y] as the major product. The spectral data for compound [X] are: ¹H NMR: δ 1.17(d, 6H), 3.02 (m, 1H), 4.10(s, 2H); ¹³C NMR: δ [7, 37, 39, 210.

54. The compound [X] is:

55.