Section-A

Q.1 – Q.25 : Carry ONE mark each.

- The point group symmetry of $CH_2 = C = CH_2$ is: 1.
 - (a) D_{2h}

- Two trial wave function $\phi = c_1 x (a x)$ and $\phi_2 = c_1 x (a x) + c_2 x^2 (a x)^2$ give ground state energies E_1 2. and E2, respectively, for the microscopic particle in a 1-D box by using the variation method. If the exact ground state energy is E_0 , the correct relationship between E_0 , E_1 and E_2 is:
 - (a) $E_0 = E_1 = E_2$
- (b) $E_0 < E_1 < E_2$ (c) $E_0 < E_2 < E_1$
- (d) $E_0 > E_2 = E_1$
- The ground state energies of H atom and H, molecule are -13.6 eV and -31.7 eV, respectively. The dissocia-3. tion energy of H₂ is _____eV.
- A 2 L vessel containing 2g of H, gas at 27°C is connected to a 2L vessel containing 176 g of CO, gas at 27°C. 4. Assuming ideal behaviour of H₂ and CO₂, the partial pressure of H₂ at equilibrium is _____bar.
- Consider the reaction, $2C(s) + O_2(g) \Longrightarrow 2CO(g)$ at equilibrium, 5.

The equilibrium can be shifted towards the forward direction by

- (a) Increasing the amount of carbon in the system
- (b) Decreasing the volume of the system.
- (c) Decreasing the pressure of the system.
- (d) Increasing the temperature of the system
- A sparingly soluble electrolyte M_2X ionizes as $M_2X =$ 6.

The solubility product (K_{sp}) , molal solubility (S) and molal activity coefficient (γ_{\pm}) are related by

- (a) $K_{SP} = S^2 \gamma_{\pm}^2$ (b) $K_{SP} = S^3 \gamma_{\pm}^3$ (c) $K_{SP} = 4S^3 \gamma_{\pm}^2$ (d) $K_{SP} = 4S^3 \gamma_{\pm}^3$
- For the first order consecutive reaction, $P \rightarrow Q \rightarrow R$, under steady state approximation to [Q], the variation 7. of [P], [Q] and [R] with time are best reprsented by

- At 273 K and 10 bar, the langmuir adsorption of a gas on a solid surface gave the fraction of surface 8. coverage as 0.01. The Langmuir adsorption isotherm constant is ______ bar⁻¹.
- Conversion of boron trifluoride to tetrafluoroborate accompanies 9.
 - (a) Increase in symmetry and bond elongation
 - (b) Increase in symmetry and bond contraction
 - (c) Decrease in symmetry and bond contraction
 - (d) Decrease in symmetry and bond elongation.

- 10. The correct statement with respect to the bonding of the ligands, Me₂N and Me₂P with the metal ions Be²⁺ and Pd²⁺ is, (a) The ligands bind equally strong with both the metal ions as they are dicationic. (b) The ligands bind equally strong with both the metal ions as both the ligands are pyramidal. (c) The binding is stronger for Me₃N with Be²⁺ and Me₃P with Pd²⁺. (d) The binding is stronger for Me₃N with Pd²⁺ and Me₃P with Be²⁺. A crystal has the lattice parameters $a \neq b \neq c$ and $\alpha = \beta = \gamma = 90^{\circ}$. The crystal system is 11. (a) Tetragonal (b) Monoclinic (c) Cubic (d) Orthorhombic 12. The by-product formed in the characteristic reaction of $(CO)_5$ Cr = C(OMe)(Me) with MeNH₂ is (a) CO (b) MeOH (c) MeCHO

- (d) MeCONH₂.
- 13. The catalyst and co-catalyst used in Wacker process, respectively, are (b) CuCl₂ and [PdCl₄]²⁻
 - (a) PdCl₂ and Cu

(c) Pd and CuCl

- (d) $[PdCl_{1}]^{2-}$ and $CuCl_{2}$.
- Oxymyoglobin $Mb(O_2)$ and oxhyhemoglobin $Hb(O_2)_4$, respectively, are 14.
 - (a) Paramagnetic and paramagnetic
- (b) Diamagnetic and diamagnetic
- (c) Paramagnetic and diamagnetic
- (d) Diamagnetic and paramagnetic.
- Hapticity of cycloheptatriene in $Mo(C_7H_9)(CO_3)$ is __ 15.
- 16. The number of oxygen molecule(s) that a molecule of hemerythrin can transport is _____
- 17. The maximum number of stereoisomers possible for the compound given below is _____

The correct sequence of the amino acids present in the tripeptide given below is 18.

- (a) Val-Ser-Thr
- (b) Val-Thr-Ser
- (c) Leu-Ser-Thr
- (d) Leu-Thr-Ser
- 19. Among the compounds given in the options (a)–(d), the one that can be used as a formyl anion equivalent (in the presence of a strong base) is:
 - (a) ethylene
- (b) nitroethane
- (c) 1, 3-dithiane
- (d) 1, 4-dithiane

Con: 9871547744

20. The major product formed in the reaction given below is:

$$\frac{1. \text{Me}_2\text{CuLi}, \text{Et}_2\text{O}}{2. \text{H}_3\text{O}^+}$$

21. The major product formed in the reaction given below is

22. The pericyclic reaction given below is an example of

- (a) [1, 3]-sigmatropic shift
- (c) [3, 5]-sigmatropic shift

- (b) [1, 5]-sigmatropic shift
- (d) [3, 3]-sigmatropic shift.
- 23. The major product formed in the reaction of quinoline with potassium amide (KNH₂) in liquid ammonia is:

- 24. The number of signals that appear in the proton decoupled 13 C NMR spectrum of benzonitrile (C_7H_5N) is
- 25. Among the compounds given in the option (a) to (d), the one that exhibits a sharp band at around 3300 cm⁻¹ in the IR spectrum is:
 - (a) 1, 2-butadiene
- (b) 1, 3-butadiene
- (c) 1-butyne
- (d) 2-butyne

Q.26 - Q.55: Carry TWO marks each.

26. In the metathesis reaction given below, 4.32 g of the compound X was treated with 822 mg of the catalyst Y to yield 2.63 g of the product Z. The mol% of the catalyst Y used in this reaction is ______ [Atomic weights of Ru = 101; P = 31; Cl = 35.5]

MeO

$$X$$
 CI
 PR_3
 Ph
 PR_3
 Ph
 Ru
 Ph
 Ru
 Ph
 Ru
 $R=cyclohexyl)$

27. An organic compound \mathbf{Q} exhibited the following spectral data:

IR: 1760 cm^{-1}

¹H NMR : δ (ppm) : 7.2 (1H, d, J = 16.0 Hz), 5.1 (1H, m), 2.1 (3H, s), 1.8(3H, d, J = 7.0 Hz)

 13 C NMR : δ (ppm); 170 (carbonyl carbon),

Compound **Q** is

28. The major product formed in the Beckmann rearrangement of the compound given below is:

29. The major product formed in the reaction given below is

Con: 9871547744

30. The major product formed in the reaction given below is

$$NH_2$$
 NaNO₂, aq. HCl $O-5^{\circ}C$ (b) OH (c) NO_2 (d) OH

31. The major product(s) fromed in the reaction sequence given below is/are

32. Match the compounds in the **Column-I** with photochemical reactions that they can undergo given in the **Column-II**:

Column-I

Column-II

(i)
$$H$$
 (p) oxa-di- π -methane rearrangement

(ii) (q) Paterno-Buchi reaction

		0
(iii)	$\widetilde{\parallel}$	Me
	>/\	Ma

(r) intramolecular [2+2]-cycloaddition.

(a) (i)-(q); (ii)-(s); (iii)-(p)

(b) (i)-(r); (ii)-(p); (iii)-(s)

(c)(i)-(p);(ii)-(r);(iii)-(q)

- (d)(i)-(r);(ii)-(q);(iii)-(s)
- e^{-2x^2} is an eigen function of the operator $\left(\frac{d^2}{dx^2} 16x^2\right)$. The corresponding eigen value is 33.
 - (a) +4
- (b) -4
- (c) +2
- (d) -2
- 34. The infrared spectrum of HCl gas shows an absorption band centered at 2885 cm⁻¹. The zero point energy of HCl molecule under hamonic oscillator approximation is:
 - (a) 2.8665×10^{-22} J

(b) $2.8665 \times 10^{-20} \text{ J}$

(c) 5.7330×10^{-22} J

- (d) $5.7330 \times 10^{-20} \,\mathrm{J}$
- For the reaction $X_2O_4(\ell) \rightarrow 2XO_2(g)$ at 298K, given the values, 35.

given the values, $\Delta U = 9kJ$ and $\Delta S = 84 J K^{-1}$, ΔG is

- (a) -11.08 kJ
- (b) +11.08 kJ
- (c) -13.55 kJ
- The change in enthalpy when 3 mol of liquid benzene transforms to the vapour state at its boiling tempera-36. ture (80°C) and at 1 bar pressure is _____
- The moment of inertia of a homonuclear diatomic molecule is 7.5×10^{-45} kg m². Its rotational partition 37. function at 500 K is
- For a reaction of the type $X \xrightarrow[k_2]{k_1} Y$, the correct rate expression is $([X]_0$ and [X] corresponds to the 38. concentration of X at time t = 0 and t = t, respectively)

(a)
$$-\frac{d[X]}{dt} = k_1[X]_0 - (k_1 + k_2)[X]$$
 (b) $-\frac{d[X]}{dt} = (k_1 + k_2)[X] - k_2[X]_0$ (c) $-\frac{d[X]}{dt} = (k_1 + k_2)[X]_0 - k_1[X]$ (d) $-\frac{d[X]}{dt} = (k_1 - k_2)[X] - k_1[X]_0$

(b)
$$-\frac{d[X]}{dt} = (k_1 + k_2)[X] - k_2[X]_0$$

(c)
$$-\frac{d[X]}{dt} = (k_1 + k_2)[X]_0 - k_1[X]$$

(d)
$$-\frac{d[X]}{dt} = (k_1 - k_2)[X] - k_1[X]_0$$

The temperature dependence of partition are as follows: 39.

 $q_{\text{translation}} \propto T^{\frac{3}{2}}$

 $q_{vibration} \propto T^0$

 $q_{rotation} \propto T (linear molecule)$

 $q_{rotation} \propto T^{\frac{3}{2}}$ (non – linear molecule)

According to the Conventional Transition State Theory (CTST), the temperature dependence of the Arrhenius pre-exponential factor for a reaction of the type given below is

linear molecule + linear molecule \longrightarrow non-liner linear transition state \longrightarrow products.

- (a) T^{-1}
- (b) T^0
- (c) T¹
- (d) T^2 .
- Decarbonylation reaction of [cis-(CH₂CO)Mn(¹³CO)(CO)₄] yields X, Y and Z, where 40. $X = [(CH_a)Mn(CO)_e]; Y = [cis-(CH_a)Mn(^{13}CO)CO_a]; [Z = trans-(CH_a)Mn(^{13}CO)(CO)_a]$ The molar ratio of the products (X : Y : Z) in this reaction is
 - (a) 1:1:1
- (b) 1:2:1
- (c) 1:1:2
- (d) 2:1:1

41.	According to polyhed (a) closo	(b) nido	(c) arachno	(d) hypho	
42.	The increasing order (a) CuCl < NaCl < N (c) NaF < CuCl < Na	laF	he halides NaCl, CuCl a (b) NaF < NaCl < C (d) CuCl < NaF < N	uCl	
43.	The correct electronic (a) [Xe]4f ⁷ and 7.9 B (c) [Xe]4f ⁶ 5d ¹ and 7.	SM	uration and spin only magnetic moment of Gd³+ (atomic number 64) are (b) [Xe]4f³ and 8.9 BM (d) [Rn]5f³ and 7.9 BM		
44.			s, the one that has the high $(c) [V(H_2O)_6]^{2+}$	ghest enthalpy of hydration is $(d) [Cr(H_2O)_6]^{2+}$	
45.	A metal crystallizes is contact distance in the (a) 4.20 Å		ubic lattice parameter o	of 4.20Å. The shortest atom to atom (d) 2.10Å	
46.	Polarographic method two ions (Cu ²⁺ and Co			Cu ²⁺ and Cd ²⁺ in a given mixture of the	
47.	(a) half-wave potentia (c) decomposition por The ground state term	als tentials	(b) migration currents (d) diffusion currents	01,	
	(a) ${}^3T_{1g}$	(b) ${}^{3}T_{2g}^{2}$	(c) ${}^{3}A_{2g}$	(d) ${}^4T_{1g}$	
	Commond Data Que	estions.			
48.	Commond data for ON, N-Dimethylforma NMR spectrum is rec	Q.48 and Q.49: mide (DMF) gives disorded at different ten	nperatures.	ls for the methyl protons whenits ¹ H emperatures given in the Column-II. Column-II	
48.	Commond data for N, N-Dimethylforma NMR spectrum is rec Match the patterns of	Q.48 and Q.49: mide (DMF) gives discorded at different tends the NMR signals give	nperatures. In the Column-I with t	emperatures given in the Column-II.	
48.	Commond data for N, N-Dimethylforma NMR spectrum is rec Match the patterns of Column-I	Q.48 and Q.49: mide (DMF) gives discorded at different tende the NMR signals give three protons each, at	inperatures. In the Column-I with the δ 2.87 and 2.97 ppm	emperatures given in the Column-II. Column-II	
48.	Commond data for ON, N-Dimethylforma NMR spectrum is recommended the patterns of Column-I (i) Two singlets, for the commond of the patterns of the column-I (ii) Two singlets, for the column-I	Q.48 and Q.49: mide (DMF) gives discorded at different ten the NMR signals give hree protons each, at for six protons at δ 2	inperatures. In the Column-I with the δ 2.87 and 2.97 ppm	emperatures given in the Column-II. Column-II (x) 25°C	
48.	Commond data for (N, N-Dimethylforma NMR spectrum is rec Match the patterns of Column-I (i) Two singlets, for the (ii) One sharp singlet (iii) One broad signal (a) (i)-(x); (ii)-(y); (iii)	Q.48 and Q.49: mide (DMF) gives discreted at different tendenthe NMR signals given the NMR signals given hree protons each, at for six protons at δ 2 for six protons	in the Column-I with the δ 2.87 and 2.97 ppm δ .92 ppm δ (b) (i)-(x); (ii)-(z); (ii)	emperatures given in the Column-II. Column-II (x) 25°C (y) 120°C (z) 150°C i)-(y)	
48.	Commond data for N, N-Dimethylforma NMR spectrum is rec Match the patterns of Column-I (i) Two singlets, for the continuous of the column-I (ii) One sharp singlet (iii) One broad signal (a) (i)-(x); (ii)-(y); (iii) (c) (i)-(z); (ii)-(x); (iii)-(x); (i	Q.48 and Q.49: mide (DMF) gives disorded at different tende the NMR signals gives three protons each, at for six protons at δ 2 for six protons (-(z) (-(y))	nperatures. In (in the Column-I with the the column-I with the	emperatures given in the Column-II. Column-II (x) 25°C (y) 120°C (z) 150°C i)-(y) ii-(x)	
48. 49.	Commond data for N, N-Dimethylforma NMR spectrum is rec Match the patterns of Column-I (i) Two singlets, for the (ii) One sharp singlet (iii) One broad signal (a) (i)-(x); (ii)-(y); (iii) (c) (i)-(z); (ii)-(x); (iii)-(x); (iii)-(x	Q.48 and Q.49: mide (DMF) gives disorded at different ten the NMR signals give hree protons each, at for six protons at δ 2 for six protons)-(z))-(y) lata, the calculated di	nperatures. In (in the Column-I with the the column-I with the	emperatures given in the Column-II. Column-II (x) 25°C (y) 120°C (z) 150°C ii)-(y) ii)-(x) ties of the two methyl singlets, if the	
	Commond data for ON, N-Dimethylforman NMR spectrum is recommended to Match the patterns of Column-I (i) Two singlets, for the column-I (ii) One sharp singlet (iii) One broad signal (a) (i)-(x); (ii)-(y); (iii) (c) (i)-(z); (ii)-(x); (iii) Based on the above despectrum is recorded to Common data for Q	Q.48 and Q.49: mide (DMF) gives disorded at different ten the NMR signals give hree protons each, at for six protons at δ 2 for six protons (-(z) (-(n in the Column-I with	emperatures given in the Column-II. Column-II (x) 25°C (y) 120°C (z) 150°C ii)-(y) ii)-(x) ties of the two methyl singlets, if the	
	Commond data for ON, N-Dimethylforman NMR spectrum is recommended that the patterns of Column-I (i) Two singlets, for the column-I (ii) One sharp singlet (iii) One broad signal (a) (i)-(x); (ii)-(y); (iii) (c) (i)-(z); (ii)-(x); (iii) Based on the above despectrum is recorded Commondata for Questions and the production of the compound X is:	Q.48 and Q.49: mide (DMF) gives disorded at different ten the NMR signals give hree protons each, at for six protons at δ 2 for six protons (-(z) (-(nperatures. In (in the Column-I with the C	emperatures given in the Column-II. Column-II (x) 25°C (y) 120°C (z) 150°C ii)-(y) ii)-(x) eies of the two methyl singlets, if the Hz.	
49.	Commond data for ON, N-Dimethylforman NMR spectrum is recommended to Match the patterns of Column-I (i) Two singlets, for the column-I (ii) One sharp singlet (iii) One broad signal (a) (i)-(x); (ii)-(y); (iii) (c) (i)-(z); (ii)-(x); (iii) Based on the above despectrum is recorded to Common data for Q Heating a mixture of along with other products.	Q.48 and Q.49: mide (DMF) gives disorded at different ten the NMR signals give hree protons each, at for six protons at δ 2 for six protons (-(z) (-(n in the Column-I with	emperatures given in the Column-II. Column-II (x) 25°C (y) 120°C (z) 150°C ii)-(y) ii)-(x) eies of the two methyl singlets, if the Hz.	
49.	Commond data for ON, N-Dimethylforman NMR spectrum is recommended to Match the patterns of Column-I (i) Two singlets, for the column-I (ii) One sharp singlet (iii) One broad signal (a) (i)-(x); (ii)-(y); (iii) (c) (i)-(z); (ii)-(x); (iii) Based on the above despectrum is recorded to Commond data for Question Heating a mixture of along with other production Compound X is: (a) NH ₄ [BH ₄]	Q.48 and Q.49: mide (DMF) gives disorded at different tend the NMR signals give three protons each, at for six protons at δ 2 for six protons ()-(z) ()-(y) lata, the calculated dison a 300 MHz spectroscopic ammonium chloride address under ambient conditions.	nperatures. In the Column-I with the Colum	emperatures given in the Column-II. Column-II (x) 25°C (y) 120°C (z) 150°C ii)-(y) ii)-(x) eies of the two methyl singlets, if the Hz.	
49.50.	Commond data for ON, N-Dimethylforman NMR spectrum is recommended to Match the patterns of Column-I (i) Two singlets, for the column-I (ii) One sharp singlet (iii) One broad signal (a) (i)-(x); (ii)-(y); (iii) (c) (i)-(z); (ii)-(x); (iii) Based on the above despectrum is recorded to Commond data for Question Heating a mixture of along with other production Compound X is: (a) NH ₄ [BH ₄] (c) N ₃ B ₃ H ₆	Q.48 and Q.49: mide (DMF) gives disorded at different tend the NMR signals give three protons each, at for six protons at δ 2 for six protons ()-(z) ()-(y) lata, the calculated dison a 300 MHz spectroscopic ammonium chloride address under ambient conditions.	nperatures. In the Column-I with the Colum	emperatures given in the Column-II. Column-II (x) 25°C (y) 120°C (z) 150°C i)-(y) i)-(x) eies of the two methyl singlets, if the Hz. borate gives one liquid product (X),	

Linked Answer Q.52 and Q.53:

52. The major product X formed in the reaction given below is

53. Oxidation of the product X, obtained in the above reaction, with active manganse dioxide, followed by acidic hydrolysis gives

Statement for Linked Answer Q.54 and Q.55:

The standard half-cell reduction potential of Fe^{3+} (aq)|Fe is -0.036~V and that of OH^- (aq) |Fe(OH) $_3$ (s)|Fe is -0.786~V

- 54. For the determination of solubility product (K_{SP}) of $Fe(OH)_3$, the appropriate cell representation and its emfare, respectively.
 - (a) $\langle \text{Fe} | \text{Fe} (\text{OH})_3 (\text{s}) | \text{OH}^- (\text{aq}) \text{Fe}^{3+} (\text{aq}) | \text{Fe} \rangle$, -0.750 V
 - (b) $\langle Fe | Fe^{3+}(aq)OH^*(aq) | Fe(OH)_3(s) | Fe \rangle$, -0.750V
 - (c) $\langle \text{Fe} | \text{Fe} (\text{OH})_3 (\text{s}) | \text{OH}^- (\text{aq}) \text{Fe}^{3+} (\text{aq}) | \text{Fe} \rangle$, +0.750 V
 - (d) $\langle \text{Fe} | \text{Fe}^{3+}(\text{aq}) \text{OH}^{-}(\text{aq}) | \text{Fe}(\text{OH})_{3}(\text{s}) | \text{Fe} \rangle$, -0.822 V
- 55. The value of $log_e(K_{SP})$ for $Fe(OH)_3$ at 298 K is
 - (a) -38.2
- (b) +87.6
- (c) 96.0
- (d) 87.6