Section-A

Q. 1 - Q. 25 : Carry ONE mark each.

1. The point group symmetry of $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$ is:
(a) $D_{2 h}$
(b) $\mathrm{C}_{2 \mathrm{~h}}$
(c) $\mathrm{C}_{2 \mathrm{v}}$
(d) $D_{2 d}$
2. Two trial wave function $\phi=c_{1} x(a-x)$ and $\phi_{2}=c_{1} x(a-x)+c_{2} x^{2}(a-x)^{2}$ give ground state energies E_{1} and E_{2}, respectively, for the microscopic particle in a 1-D box by using the variation method. If the exact ground state energy is E_{0}, the correct relationship between $\mathrm{E}_{0}, \mathrm{E}_{1}$ and E_{2} is:
(a) $\mathrm{E}_{0}=\mathrm{E}_{1}=\mathrm{E}_{2}$
(b) $\mathrm{E}_{0}<\mathrm{E}_{1}<\mathrm{E}_{2}$
(c) $\mathrm{E}_{0}<\mathrm{E}_{2}<\mathrm{E}_{1}$
(d) $E_{0}>E_{2}=E_{1}$
3. The ground state energies of H atom and H_{2} molecule are -13.6 eV and -31.7 eV , respectively. The dissociation energy of H_{2} is \qquad eV .
4. A 2 L vessel containing 2 g of H_{2} gas at $27^{\circ} \mathrm{C}$ is connected to a 2 L vessel containing 176 g of CO_{2} gas at $27^{\circ} \mathrm{C}$. Assuming ideal behaviour of H_{2} and CO_{2}, the partial pressure of H_{2} at equilibrium is \qquad bar.
5. Consider the reaction, $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$ at equilibrium,

The equilibrium can be shifted towards the forward direction by
(a) Increasing the amount of carbon in the system
(b) Decreasing the volume of the system.
(c) Decreasing the pressure of the system.
(d) Increasing the temperature of the system
6. A sparingly soluble electrolyte $M_{2} X$ ionizes as $M_{2} X \rightleftharpoons+\mathrm{X}^{2-}$.

The solubility product $\left(\mathrm{K}_{\mathrm{sp}}\right)$, molal solubility (S) and molat activity coefficient $\left(\gamma_{ \pm}\right)$are related by
(a) $\mathrm{K}_{\mathrm{SP}}=\mathrm{S}^{2} \gamma_{ \pm}^{2}$
(b) $\mathrm{K}_{\mathrm{SP}}=\mathrm{S}^{3} \gamma_{ \pm}^{3}$
(c) $\mathrm{K}_{\mathrm{SP}}=4 \mathrm{~S}^{3} \gamma_{ \pm}^{2}$
(d) $\mathrm{K}_{\mathrm{SP}}=4 \mathrm{~S}^{3} \gamma_{ \pm}^{3}$
7. For the first order consecutive reaction, $\mathrm{P} \rightarrow \mathrm{Q} \rightarrow \mathrm{R}$, under steady state approximation to [Q], the variation of $[P],[Q]$ and $[R]$ with time are best reprsented by
(a)

(b)

(c)

(d)

8. At 273 K and 10 bar, the langmuir adsorption of a gas on a solid surface gave the fraction of surface coverage as 0.01 . The Langmuir adsorption isotherm constant is \qquad bar $^{-1}$.
9. Conversion of boron trifluoride to tetrafluoroborate accompanies
(a) Increase in symmetry and bond elongation
(b) Increase in symmetry and bond contraction
(c) Decrease in symmetry and bond contraction
(d) Decrease in symmetry and bond elongation.
10. The correct statement with respect to the bonding of the ligands, $\mathrm{Me}_{3} \mathrm{~N}$ and $\mathrm{Me}_{3} \mathrm{P}$ with the metal ions Be^{2+} and Pd^{2+} is,
(a) The ligands bind equally strong with both the metal ions as they are dicationic.
(b) The ligands bind equally strong with both the metal ions as both the ligands are pyramidal.
(c) The binding is stronger for $\mathrm{Me}_{3} \mathrm{~N}$ with Be^{2+} and $\mathrm{Me}_{3} \mathrm{P}$ with Pd^{2+}.
(d) The binding is stronger for $\mathrm{Me}_{3} \mathrm{~N}$ with Pd^{2+} and $\mathrm{Me}_{3} \mathrm{P}$ with Be^{2+}.
11. A crystal has the lattice parameters $\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$ and $\alpha=\beta=\gamma=90^{\circ}$. The crystal system is
(a) Tetragonal
(b) Monoclinic
(c) Cubic
(d) Orthorhombic
12. The by-product formed in the characteristic reaction of $(\mathrm{CO})_{5} \mathrm{Cr}=\mathrm{C}(\mathrm{OMe})(\mathrm{Me})$ with MeNH_{2} is
(a) CO
(b) MeOH
(c) MeCHO
(d) MeCONH_{2}.
13. The catalyst and co-catalyst used in Wacker process, respectively, are
(a) PdCl_{2} and Cu
(b) CuCl_{2} and $\left[\mathrm{PdCl}_{4}\right]^{2-}$
(c) Pd and CuCl
(d) $\left[\mathrm{PdCl}_{4}\right]^{2-}$ and CuCl_{2}.
14. Oxymyoglobin $\mathrm{Mb}\left(\mathrm{O}_{2}\right)$ and oxhyhemoglobin $\mathrm{Hb}\left(\mathrm{O}_{2}\right)_{4}$, respectively, are
(a) Paramagnetic and paramagnetic
(b) Diamagnetic and diamagnetic
(c) Paramagnetic and diamagnetic
(d) Diamagnetic and paramagnetic.
15. Hapticity of cycloheptatriene in $\mathrm{Mo}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)\left(\mathrm{CO}_{3}\right)$ is \qquad
16. The number of oxygen molecule(s) that a molecule of hemerythrin can transport is \qquad
17. The maximum number of stereoisomers possible for the compound given below is \qquad

18. The correct sequence of the amino acids present in the tripeptide given below is

(a) Val-Ser-Thr
(b) Val-Thr-Ser
(c) Leu-Ser-Thr
(d) Leu-Thr-Ser
19. Among the compounds given in the options (a)-(d), the one that can be used as a formyl anion equivalent (in the presence of a strong base) is:
(a) ethylene
(b) nitroethane
(c) 1, 3-dithiane
(d) 1, 4-dithiane
20. The major product formed in the reaction given below is:

(a)

(b)

(c)

(d)

21. The major product formed in the reaction given below is

(a)

(b)

(c)

(d)

22. The pericyclic reaction given below is an example of

(a) $[1,3]$-sigmatropic shift
(b) $[1,5]$-sigmatropic shift
(c) $[3,5]$-sigmatropic shift
(d) [3, 3]-sigmatropic shift.
23. The major product formed in the reaction of quinoline with potassium amide $\left(\mathrm{KNH}_{2}\right)$ in liquid ammonia is:
(a)

(b)

(c)

(d)

24. The number of signals that appear in the proton decoupled ${ }^{13} \mathrm{C}$ NMR spectrum of benzonitrile $\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}\right)$ is \qquad
25. Among the compounds given in the option (a) to (d), the one that exhibits a sharp band at around 3300 cm^{-1} in the IR spectrum is:
(a) 1, 2-butadiene
(b) 1, 3-butadiene
(c) 1-butyne
(d) 2-butyne

Q. 26 - Q. 55 : Carry TWO marks each.

26. In the metathesis reaction given below, 4.32 g of the compound X was treated with 822 mg of the catalyst Y to yield 2.63 g of the product Z . The mol $\%$ of the catalyst Y used in this reaction is \qquad [Atomic weights of $\mathrm{Ru}=101 ; \mathrm{P}=31 ; \mathrm{Cl}=35.5$]

27. An organic compound \mathbf{Q} exhibited the following spectral data:

IR:
$1760 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR : $\delta(\mathrm{ppm}): 7.2(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}), 5.1(1 \mathrm{H}, \mathrm{m}), 2.1(3 \mathrm{H}, \mathrm{s}), 1.8(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz})$ ${ }^{13} \mathrm{C}$ NMR : $\delta(\mathrm{ppm}) ; 170$ (carbonyl carbon),
Compound \mathbf{Q} is
(a)

(b)

(c)

(d)

28. The major product formed in the Beckmann rearrangement of the compound given below is:

(a)

(b)

(c)

(d)

29. The major product formed in the reaction given below is

(a)

(b)

(c)

(d)

30. The major product formed in the reaction given below is

(a)

(b)

(c)

(d)

31. The major product(s) fromed in the reaction sequence given below is/are

3. aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$
(a)

(b)
 and

(c)

(d)

32. Match the compounds in the Column-I with photochemical reactions that they can undergo given in the Column-II:
Column-I
Column-II
(i)

(p) oxa-di- π-methane rearrangement
(ii)

(q) Paterno-Buchi reaction
(iii)

(r) intramolecular [2+2]-cycloaddition.
(a) (i)-(q); (ii)-(s); (iii)-(p)
(b) (i)-(r); (ii)-(p); (iii)-(s)
(c) (i)-(p); (ii)-(r); (iii)-(q)
(d) (i)-(r); (ii)-(q); (iii)-(s)
33. $e^{-2 x^{2}}$ is an eigen function of the operator $\left(\frac{d^{2}}{d x^{2}}-16 x^{2}\right)$. The corresponding eigen value is
(a) +4
(b) -4
(c) +2
(d) -2
34. The infrared spectrum of HCl gas shows an absorption band centered at $2885 \mathrm{~cm}^{-1}$. The zero point energy of HCl molecule under hamonic oscillator approximation is:
(a) $2.8665 \times 10^{-22} \mathrm{~J}$
(b) $2.8665 \times 10^{-20} \mathrm{~J}$
(c) $5.7330 \times 10^{-22} \mathrm{~J}$
(d) $5.7330 \times 10^{-20} \mathrm{~J}$
35. For the reaction $\mathrm{X}_{2} \mathrm{O}_{4}(\ell) \rightarrow 2 \mathrm{XO}_{2}(\mathrm{~g})$ at 298 K , given the values, given the values, $\Delta \mathrm{U}=9 \mathrm{~kJ}$ and $\Delta \mathrm{S}=84 \mathrm{~J} \mathrm{~K}^{-1}, \Delta \mathrm{G}$ is
(a) -11.08 kJ
(b) +11.08 kJ
(c) -13.55 kJ
(d) +13.55 kJ
36. The change in enthalpy when 3 mol of liquid benzene transformsto the vapour state at its boiling temperature $\left(80^{\circ} \mathrm{C}\right)$ and at 1 bar pressure is \qquad kJ
37. The moment of inertia of a homonuclear diatomic molectle is $7.5 \times 10^{-45} \mathrm{~kg} \mathrm{~m}^{2}$. Its rotational partition function at 500 K is \qquad
38. For a reaction of the type $X \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} \mathrm{Y}$, the correct rate expression is $\left([X]_{0}\right.$ and $[\mathrm{X}]$ corresponds to the concentration of X at time $\mathrm{t}=0$ and $\mathrm{t}=\mathrm{t}$, respectively)
(a) $-\frac{\mathrm{d}[\mathrm{X}]}{\mathrm{dt}}=\mathrm{k}_{1}[\mathrm{X}]_{0}-\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)[\mathrm{X}]$
(b) $-\frac{\mathrm{d}[\mathrm{X}]}{\mathrm{dt}}=\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)[\mathrm{X}]-\mathrm{k}_{2}[\mathrm{X}]_{0}$
(c) $-\frac{\mathrm{d}[\mathrm{X}]}{\mathrm{dt}}=\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)[\mathrm{X}]-\mathrm{k}_{1}[\mathrm{X}]$
(d) $-\frac{\mathrm{d}[\mathrm{X}]}{\mathrm{dt}}=\left(\mathrm{k}_{1}-\mathrm{k}_{2}\right)[\mathrm{X}]-\mathrm{k}_{1}[\mathrm{X}]_{0}$
39. The temperature dependence of partition are as follows:
$\mathrm{q}_{\text {translation }} \propto \mathrm{T}^{3 / 2}$
$q_{\text {vibration }} \propto \mathrm{T}^{0}$
$\mathrm{q}_{\text {rotation }} \propto \mathrm{T}$ (linear molecule)
$\mathrm{q}_{\text {rotation }} \propto \mathrm{T}^{3 / 2}$ (non - linear molecule)

According to the Conventional Transition State Theory (CTST), the temperature dependence of the Arrhenius pre-exponential factor for a reaction of the type given below is
linear molecule + linear molecule \rightleftarrows non-liner linear transition state \longrightarrow products.
(a) T^{-1}
(b) T^{0}
(c) T^{1}
(d) T^{2}.
40. Decarbonylation reaction of [cis- $\left.\left(\mathrm{CH}_{3} \mathrm{CO}\right) \mathrm{Mn}\left({ }^{13} \mathrm{CO}\right)(\mathrm{CO})_{4}\right]$ yields X, Y and Z , where
$\mathrm{X}=\left[\left(\mathrm{CH}_{3}\right) \mathrm{Mn}(\mathrm{CO})_{5}\right] ; \mathrm{Y}=\left[\mathrm{cis}-\left(\mathrm{CH}_{3}\right) \mathrm{Mn}\left({ }^{13} \mathrm{CO}\right) \mathrm{CO}_{4}\right] ;\left[\mathrm{Z}=\operatorname{trans}-\left(\mathrm{CH}_{3}\right) \mathrm{Mn}\left({ }^{13} \mathrm{CO}\right)(\mathrm{CO})_{4}\right]$
The molar ratio of the products $(\mathrm{X}: \mathrm{Y}: \mathrm{Z})$ in this reaction is
(a) $1: 1: 1$
(b) $1: 2: 1$
(c) $1: 1: 2$
(d) $2: 1: 1$
41. According to polyhedral electron count rule, the structure of $\mathrm{Rh}_{6}(\mathrm{CO})_{16}$ is:
(a) closo
(b) nido
(c) arachno
(d) hypho
42. The increasing order of melting points of the halides $\mathrm{NaCl}, \mathrm{CuCl}$ and NaF is:
(a) $\mathrm{CuCl}<\mathrm{NaCl}<\mathrm{NaF}$
(b) $\mathrm{NaF}<\mathrm{NaCl}<\mathrm{CuCl}$
(c) $\mathrm{NaF}<\mathrm{CuCl}<\mathrm{NaCl}$
(d) $\mathrm{CuCl}<\mathrm{NaF}<\mathrm{NaCl}$
43. The correct electronic configuration and spin only magnetic moment of Gd^{3+} (atomic number 64) are
(a) $[\mathrm{Xe}] 4 \mathrm{f}^{7}$ and 7.9 BM
(b) $[\mathrm{Xe}] 4 \mathrm{f}^{7}$ and 8.9 BM
(c) $[\mathrm{Xe}] 4 \mathrm{f}^{6} 5 \mathrm{~d}^{1}$ and 7.9 BM
(d) $[\mathrm{Rn}] 5 \mathrm{f}^{7}$ and 7.9 BM
44. Among the following octahedral complexes, the one that has the highest enthalpy of hydration is
(a) $\left[\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(b) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(c) $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(d) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
45. A metal crystallizes in the face-centered cubic lattice parameter of $4.20 \AA$. The shortest atom to atom contact distance in the lattice is
(a) $4.20 \AA$
(b) $2.97 \AA$
(c) $2.42 \AA$
(d) $2.10 \AA$
46. Polarographic method of analysis to obtain individual amounts of Cu^{2+} and Cd^{2+} in a given mixture of the two ions $\left(\mathrm{Cu}^{2+}\right.$ and $\left.\mathrm{Cd}^{2+}\right)$ is achieved by measuring their
(a) half-wave potentials
(b) migration currents
(c) decomposition potentials
(d) diffusion currents
47. The ground state term $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}\right.$ is:
(a) ${ }^{3} \mathrm{~T}_{1 \mathrm{~g}}$
(b) ${ }^{3} \mathrm{~T}_{2 g}$
(c) ${ }^{3} \mathrm{~A}_{2 g}$
(d) ${ }^{4} \mathrm{~T}_{1 g}$

Commond Data Questions:

Commond data for Q. 48 and Q.49:

N , N-Dimethylformamide (DMF) gives different patterns of signals for the methyl protons whenits ${ }^{1} \mathrm{H}$ NMR spectrum is recorded at different temperatures.
48. Match the patterns of the NMR signals given in the Column-I with temperatures given in the Column-II.

Column-I

(i) Two singlets, for three protons eaeh, at $\delta 2.87$ and 2.97 ppm
(ii) One sharp singlet for six protons at $\delta 2.92 \mathrm{ppm}$
(iii) One broad signal for six protons

Column-II

(x) $25^{\circ} \mathrm{C}$
(y) $120^{\circ} \mathrm{C}$
(z) $150^{\circ} \mathrm{C}$
(a) (i)-(x); (ii)-(y); (iii)-(z)
(b) (i)-(x); (ii)-(z); (iii)-(y)
(c) (i)-(z); (ii)-(x); (iii)-(y)
(d) (i)-(z); (ii)-(y); (iii)-(x)
49. Based on the above data, the calculated difference in the frequencies of the two methyl singlets, if the spectrum is recorded on a 300 MHz spectrometer, is \qquad Hz .

Common data for Q. 50 and Q.51:

Heating a mixture of ammonium chloride and sodium tetrahydridoborate gives one liquid product (X), along with other products under ambient conditions.
50. Compound X is:
(a) $\mathrm{NH}_{4}\left[\mathrm{BH}_{4}\right]$
(b) $\left[\left(\mathrm{NH}_{3}\right)_{2} \mathrm{BH}_{2}\right]\left[\mathrm{BH}_{4}\right]$
(c) $\mathrm{N}_{3} \mathrm{~B}_{3} \mathrm{H}_{6}$
(d) $\mathrm{N}_{3} \mathrm{~B}_{3} \mathrm{H}_{12}$
51. Compound X is an example of
(a) Ionic liquid
(b) saturated heterocycle
(c) molecular cage
(d) unsaturated heterocycle.

Linked Answer Q. 52 and Q.53:

52. The major product X formed in the reaction given below is

(a)

(b)

(c)

53. Oxidation of the product X , obtained in the above reaction, with active manganse dioxide, followed by acidic hydrolysis gives
(a)

(b)

(c)

(d)

Statement for Linked Answer Q. 54 and Q.55:

The standard half-cell reduction potential of $\mathrm{Fe}^{3+}(\mathrm{aq}) \mid \mathrm{Fe}$ is -0.036 V and that of $\mathrm{OH}^{-}(\mathrm{aq})\left|\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})\right| \mathrm{Fe}$ is -0.786 V
54. For the determination of solubility product $\left(\mathrm{K}_{\mathrm{SP}}\right)$ of $\mathrm{Fe}(\mathrm{OH})_{3}$, the appropriate cell representation and its emfare, respectively.
(a) $\left.\langle\mathrm{Fe}| \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})\left|\mathrm{OH}^{-}(\mathrm{ad}) \mathrm{Fe}^{3+}(\mathrm{aq})\right| \mathrm{Fe}\right\rangle, \quad-0.750 \mathrm{~V}$
(b) $\left.\langle\mathrm{Fe}| \mathrm{Fe}^{3+}(\mathrm{aq}) \mathrm{OH}-(\mathrm{aq})\left|\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})\right| \mathrm{Fe}\right\rangle, \quad-0.750 \mathrm{~V}$
(c) $\left.\langle\mathrm{Fe}| \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})\left|\mathrm{OH}^{-}(\mathrm{aq}) \mathrm{Fe}^{3+}(\mathrm{aq})\right| \mathrm{Fe}\right\rangle, \quad+0.750 \mathrm{~V}$
(d) $\left.\left\langle\mathrm{Fe}^{2}\right| \mathrm{Fe}^{3+}(\mathrm{aq}) \mathrm{OH}^{-}(\mathrm{aq})\left|\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})\right| \mathrm{Fe}\right\rangle, \quad-0.822 \mathrm{~V}$
55. The value of $\log _{\mathrm{e}}\left(\mathrm{K}_{\mathrm{SP}}\right)$ for $\mathrm{Fe}(\mathrm{OH})_{3}$ at 298 K is
(a) -38.2
(b) +87.6
(c) -96.0
(d) -87.6

