GATE-CY 2017

Section-A

Q. 1 - Q. 25 : Carry ONE mark each.

1. Consider N particles at temperature T , pressure P , volume V and chemical potential μ having energy E . The parameters that are kept constant for a canonical ensemble are
(a) N, V, T
(b) N, V, E
(c) N, P, T
(d) $\mu, \mathrm{V}, \mathrm{T}$
2. For ortho-hydrogen, the nuclear wavefunction and the rotational quantum number, respectively, are
(a) antisymmetric and even
(b) symmetric and odd
(c) symmetric and even
(d) antisymmetric and odd
3. $\quad \mathrm{m}_{1}$ and m_{2} are the slopes $(d P / d T)$ of the solid-liquid equilibrium lines in the $P-T$ phase diagrams of $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}, respectively. For $P<10 \mathrm{~atm}$, the values of m_{1} and m_{2} are
(a) $\mathrm{m}_{1}>0$ and $\mathrm{m}_{2}>0$
(b) $\mathrm{m}_{1}>0$ and $\mathrm{m}_{2}<0$
(c) $\mathrm{m}_{1}<0$ and $\mathrm{m}_{2}<0$
(d) $\mathrm{m}_{1}<0$ and $\mathrm{m}_{2}>0$
4. The rate constant of a reaction is $1.25 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$. If the initial concentration of the reactant is 0.250 $\mathrm{mol} \mathrm{L}^{-1}$, the total time (in seconds) required for complete conversion is \qquad
5. Consider an ideal gas of volume V at temperature T and pressure P. If the entropy of the gas is S, the partial derivative $(\partial \mathrm{P} / \partial \mathrm{S})_{\mathrm{V}}$ is equal to
(a) $(\partial \mathrm{T} / \partial \mathrm{P})_{\mathrm{s}}$
(b) $(\partial \mathrm{T} / \partial \mathrm{V})_{\mathrm{P}}$
(c) $-(\partial \mathrm{T} / \partial \mathrm{V})_{\mathrm{s}}$
(d) $(\partial \mathrm{T} / \partial \mathrm{S})_{\mathrm{P}}$
6. The wavelength associated with a particle in one-dimensionatbox of length L is (n refers to the quantum number)
(a) $2 L / n$
(b) L / n
(c) $n \mathrm{~L}$
(d) $L / 2 n$
7. The dependence of rate constant k on temperature $($ in K) of a reaction is given by the expression

$$
\ln \mathrm{k}=[(-5000 \mathrm{~K}) / \mathrm{T}]+10
$$

The activation energy of the reaction (in $\mathrm{kJ} \mathrm{mol}^{-1}$) is \qquad (up to two decimal places)
8. The lowest energy of a quantum mecbanical one-dimensional simple harmonic oscillator is $300 \mathrm{~cm}^{-1}$. The energy ($\mathrm{in} \mathrm{cm}^{-1}$) of the next highen level is \qquad
9. The electronic ground state term for the chromium ion in $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{4-}$ is
(a) ${ }^{3} \mathrm{~F}$
(b) ${ }^{3} \mathrm{H}$
(c) ${ }^{3} \mathrm{G}$
(d) ${ }^{5} \mathrm{D}$
10. The $\mathrm{VO}_{4}^{3-}, \mathrm{CrO}_{4}^{2-}$ and MnO_{4}^{-}ions exhibit intense ligand to metal charge transfer transition. The wavelengths of this transition follow the order
(a) $\mathrm{CrO}_{4}^{2-}<\mathrm{VO}_{4}^{3-}<\mathrm{MnO}_{4}^{-}$
(b) $\mathrm{MnO}_{4}^{-}<\mathrm{VO}_{4}^{3-}<\mathrm{CrO}_{4}^{2-}$
(c) $\mathrm{VO}_{4}^{3-}<\mathrm{CrO}_{4}^{2-}<\mathrm{MnO}_{4}^{-}$
(d) $\mathrm{CrO}_{4}^{2-}<\mathrm{MnO}_{4}^{-}<\mathrm{VO}_{4}^{3-}$
11. The lanthanide ion the exhibits color in aqueous solution is
(a) $\mathrm{La}($ III $)$
(b) $\mathrm{Eu}($ III $)$
(c) $\mathrm{Gd}(\mathrm{III})$
(d) Lu (III)
12. The hapticity of cycloheptatriene, $\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$, in $\mathrm{Mo}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)(\mathrm{CO})_{3}$ is \qquad
13. The $\mathrm{v}_{\mathrm{O}-\mathrm{o}}$ resonance Raman stretching frequency (in cm^{-1}) of the O_{2} coordinated to iron centre in oxyhemoglobin is nearly
(a) 1100
(b) 850
(c) 1550
(d) 1950
14. The energy band diagram for magnesium is
(The hatched and unhatched regions in the figure correspond to filled and unfilled regions of the band, respectively.)
(a)

(b)

(c)

(d)

15. P, F and I represent primitive, face-centered and body-centered lattices, respectively. The lattice types of NaCl and CsCl , respectively, are
(a) F and I
(b) F and P
(c) I and P
(d) P and I
16. The characteristic feature of an electron spin resonance (ESR) spectrum of frozen aqueous solution of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ at 77 K is
(a) $g_{\|}>g_{\perp}$
(b) $g_{\|}<g_{\perp}$
(c) $g_{\|}=g_{\perp}$
(d) $g_{x} \neq g_{y} \neq g_{z}$
17. The most suitable reagent for the following transformation is

(a) Li/Liq. NH_{3}
(b) $\mathrm{PtO}_{2} / \mathrm{H}_{2}$
(c) LiAlH_{4}
(d) $\mathrm{B}_{2} \mathrm{H}_{6}$
18. The major products M and N formed in the following reactions are

(a)

(b)

(c)

(d)

19. The ${ }^{13} \mathrm{C}$ NMR spectrum of acetone- d_{6} has a signal at 30 ppm as a septet in the intensity ratio
(a) $1: 6: 15: 20: 15: 6: 1$
(b) $1: 3: 6: 7: 6: 3: 1$
(c) $1: 2: 3: 5: 3: 2: 1$
(d) $1: 3: 7: 10: 7: 3: 1$
20. The major product formed in the following reaction is

(a)

(b)

(c)

(d)

21. The major product obtained in the following reaction is

(a)

(b)

(c)

(d)

22. In the two step reaction sequence given below, the starting bis-sulfone acts as

(a) a dienophile and synthetic equivalent of acetylene
(b) a dienophile and synthetic equivalent of ethylene
(c) a dipolarophile and synthetic equivalent of acetylene
(d) a dipolarophile and synthetic equivalent of ethylene
23. The major product formed in the following photochemical reaction is
(a)

(b)

(c)

(d)

24. The product formed in the following reaction is

(a) ${ }^{\text {a 1:1 mixture of }}$
 and

(b)

(c)

(d)

25. The number of possible stereoisomers for cyclononene is \qquad

Q. 26 - Q. 55 : Carry TWO marks each.

26. The mobility of a univalent ion in aqueous solution is $6.00 \times 10^{-8} \mathrm{~m}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1}$ at 300 K . Its diffusion coefficient at 300 K is $\mathrm{X} \times 10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}$. The value of X is \qquad (up to two decimal places)
27. For the following consecutive first order reactions

$$
X \xrightarrow{K_{1}=2.0 s^{-1}} Y \xrightarrow{K_{2}=0.1 s^{-1}} Z
$$

the time (in seconds) required for Y to reach its maximum concentration (assuming only X is present at time $t=0)$ is \qquad (up to two decimal places)
28. Under physiological conditions, the conversion of CO_{2} to bicarbonate ion bycarbonic anhydrase enzyme (MW $=30,000 \mathrm{~g} \mathrm{~mol}^{-1}$) has a turnover number of $4.00 \times 10^{5} \mathrm{~s}^{-1}$. The minimum amount of enzyme (in $\mu \mathrm{g}$) required to convert 0.44 g of CO_{2} to bicarbonate ions in 100 seconds is \qquad (up to two decimal places)
29. Assume 1,3,5-hexatriene to be a linear molecule and model the π electrons as particles in a one-dimensional box of length 0.70 nm . The wavelength (in nm) corresponding to the transition from the ground-state to the first excited-state is \qquad
30. The standard Gibbs free energy change of the reaetion shown below is $-2.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

$$
\mathrm{Sn}(\mathrm{~s})+\mathrm{Pb}^{2+}=\mathrm{Sn}^{2+}+\mathrm{Pb}(\mathrm{~s})
$$

Given that $E^{0}\left(\mathrm{~Pb}^{2+} / \mathrm{Pb}\right)$ is -0.126 V the value of $E^{0}\left(\mathrm{Sn}^{2+} / \mathrm{Sn}\right)$ in V is \qquad (up to two decimal places)
31. The dissociative chemisorption of $X_{2}(\mathrm{~g})$ on a metal surface follows langmuir adsorption isotherm. The ratio of the rate constants of the adsorption and desorption processes is $4.0 \mathrm{~atm}^{-1}$. The fractional surface coverage of X (adsorbed) at 1.0 atmpressure is \qquad (up to two decimal places)
32. The ionic activity coefficients of Ca^{2+} and F^{-}are 0.72 and 0.28 , respectively. The mean activity coefficient of CaF_{2} is \qquad (up to two decimal places)
33. The angle of orientation (in degrees) of the angular momentum vector with respect to z -axis for $I=2$ and $m_{\ell}=+2$ state of H -atom is \qquad (up to two decimal places).
34. The Gibbs free energy of mixing is denoted as $\Delta G_{\text {max }} 1.0$ mole of $\mathrm{He}, 3.0$ moles of Ne and 2.0 moles of Ar are mixed at the same pressure and temperature. Assuming ideal gas behavior, the value of $\Delta G_{\text {mix }} / R T$ is \qquad . (up to two decimal places)
35. $\Psi=\left[c \phi_{1}-(1 / \sqrt{3}) \phi_{2}\right]$ represents a normalized molecular orbital constructed from two different atomic orbitals ϕ_{1} and ϕ_{2} that form an orthonormal set. The value of $|\mathrm{c}|$ is \qquad . (up to two decimal places)
36. In cyclophosphazenes, $\left(\mathrm{NPX}_{2}\right)_{3}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ and Me$)$, the strength of $\mathrm{P}-\mathrm{N} \pi$-bond varies with X in the order
(a) $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>\mathrm{Me}$
(b) $\mathrm{Me}>\mathrm{F}>\mathrm{Cl}>\mathrm{Br}$
(c) $\mathrm{Br}>\mathrm{Cl}>\mathrm{F}>\mathrm{Me}$
(d) $\mathrm{Me}>\mathrm{Br}>\mathrm{Cl}>\mathrm{F}$
37. The structure type and shape of the polyhedral (skeletal) framework of the carborane $\mathrm{Me}_{2} \mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}$, respectively, are
(a) nido and dodecahedron
(b) closo and icosahedron
(c) nido and icosahedron
(d) closo and dodecahedron
38. If Δ_{o} is the octahedral splitting energy and P is the electron pairing energy, then the crystal-field stabilization energy (CFSE) of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ is
(a) $-0.8 \Delta_{o}+2 \mathrm{P}$
(b) $-0.8 \Delta_{\mathrm{o}}+1 \mathrm{P}$
(c) $-0.8 \Delta_{\text {o }}$
(d) $-1.8 \Delta_{\mathrm{o}}+3 \mathrm{P}$
39. The rates of substitution for the following reaction vary with L in the order

$\mathrm{L}=\mathrm{CH}_{3}^{-}, \mathrm{Cl}^{-}, \mathrm{Ph}^{-}$and H^{-}
(a) $\mathrm{CH}_{3}^{-}>\mathrm{Cl}^{-}>\mathrm{Ph}^{-}>\mathrm{H}^{-}$
(b) $\mathrm{Cl}^{+}>\mathrm{Pb}^{-}>\mathrm{H}^{-}>\mathrm{CH}_{3}^{-}$
(c) $\mathrm{Ph}^{-}>\mathrm{CH}_{3}^{-}>\mathrm{H}^{-}>\mathrm{Cl}^{-}$
(d) $\mathrm{H}>\mathrm{CH}_{3}^{-}>\mathrm{Ph}^{-}>\mathrm{Cl}^{-}$
40. The product formed in the reaction of $\mathrm{MeMn}(\mathrm{CO})_{5}$ with ${ }^{13} \mathrm{CO}$ is
(a) $\left(\mathrm{Me}^{13} \mathrm{CO}\right) \mathrm{Mn}(\mathrm{CO})_{5}$
(b) $(\mathrm{MeCO}) \mathrm{Mn}(\mathrm{CO})_{5}$
(c) $(\mathrm{MeCO}) \mathrm{Mn}(\mathrm{CO})_{4}\left({ }^{13} \mathrm{CO}\right)$
(d) $\left.\left(\mathrm{Me}^{13} \mathrm{CO}\right) \mathrm{Mn}(\mathrm{CO}) 4{ }_{4}{ }^{13} \mathrm{CO}\right)$
41. For the following three alkenes. 1,2 and 3, the rates of hydrogenation using Wilkinson's catalyst at $25^{\circ} \mathrm{C}$ vary in the order

(a) $1>3>2$
(b) $1>2>3$
(c) $2>1>3$
(d) $2>3>1$
42. ${ }^{210} \mathrm{Bi}$ undergoes β^{-}decay to $1 / 8$ of its initial amount in 15 days. The time required for its decay to $1 / 4$ of its initial amount is \qquad days (up to two decimal places).
43. The metal ion and the macrocyclic skeleton present in the green pigment of plants, respectively, are
(a) $\mathrm{Mg}(\mathrm{II})$ and chlorin
(b) $\mathrm{Mg}($ II $)$ and corrin
(c) Mn (II) and chlorin
(d) Mg (II) and porphine
44. The spinel structure of $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ has cubic close packed arrangement of oxide ions. The fractions of the octahedral and tetrahedral sites occupied by cations, respectively, are
(a) $1 / 8$ and $1 / 2$
(b) $1 / 4$ and $1 / 2$
(c) $1 / 2$ and $1 / 4$
(d) $1 / 2$ and $1 / 8$
45. The diffusion limiting current $\left(I_{d}\right)$ at a dropping mercury electrode for an aqueous $\mathrm{Mg}(\mathrm{II})$ solution of concentration ' c ' ($\mathrm{mol} \mathrm{L}^{-1}$) is $300 \mu \mathrm{~A}$. If ' c ' is increased by $0.1 \mathrm{~mol} \mathrm{~L}^{-1}, \mathrm{I}_{\mathrm{d}}$ increases to $900 \mu \mathrm{~A}$. The value of ' c ' (in $\mathrm{mol} \mathrm{L}^{-1}$) is \qquad (up to two decimal places)
46. The major product formed in the following reaction is
(a)

(b)

(c)

(d)

47. The product formed in the following photochemical reaction is

48. Among the following decahydroquinoline toluenesulfonates (Ts), the one that yields 9-methylamino-E-non-5enal as a major product upon aqueous solvolysis is
(a)

(b)

(c)

(d)

49. The product obtained in the following solvolysis reaction is

Enantiomerically pure compound
(a) a racemic mixture of trans 1,2-diacetoxycyclohexane
(b) enantiomerically pure trans 1,2-diacetoxycyclohexane
(c) racemic cis 1,2-diacetoxycyclohexane
(d) a mixture of cis and trans 1,2-diacetoxycyclohexane
50. The spectroscopic data for an organic compound with molecular formula $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$ are given below. IR band around $1750 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta 7.3(\mathrm{~m}, 5 \mathrm{H}), 5.85(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.5(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz})$ ppm. the compound is
(a) methyl 2-phenylpropionate
(b) 1-(phenylethyl) acetate
(c) 2-(phenylethyl) acetate
(d) methyl 3-phenylpropionate
51. The structures of the intermediate $[\mathrm{P}]$ and major product Q formed in the following reaction sequence are

(a)

(b)

(c)

(d)

52. Hydration of fumaric acid gives malic acid as shown below. Assume that addition of water takes place specifically from A face or B face. The correct statement pertaining to stereochemistry of malic acid formed is

(a) addition specifically from A face gives S isomer of malic acid
(b) addition specifically from B face gives S isomer of malic acid
(c) addition specifically from A face gives R isômer of malic acid
(d) addition specifically from B face gives a racemic mixture of malic acid
53. Hydroboration of 2-butyne with $\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{BH}$ yields the intermediate U , which on treatment with I_{2} and NaOMe at $-78^{\circ} \mathrm{C}$, gives prodact V . The structures of U and V are
(a)

(b)

(c)

(d) $\mathrm{U}=$

$\mathrm{V}=$

54. The structures of the major products W and X in the following synthetic scheme are

(a)

(b)

(c) $\mathrm{W}=$

55. The major products Y and Z in the following reaction sequence are

(a) $\mathrm{Y}=\boxtimes \mathrm{NCO}$

(b) $\mathrm{Y}=$

(c)

(d) $\mathrm{Y}=$

