Q.	1 -	Q.	25	carry	one	mark	each.
----	-----	----	----	-------	-----	------	-------

- Q.1 The **INCORRECT** statement about the solid-state structure of CsCl and CaF₂ is:
 - (A) Cations in both solids exhibit coordination number 8.
 - (B) CsCl has bcc type structure and CaF₂ has cubic close pack structure.
 - (C) Radius ratio for Cs/Cl and Ca/F is 0.93 and 0.73, respectively.
 - (D) Both exhibit close pack structure.
- Q.2 The INCORRECT statement about the interhalogen compound ICl₃ is:
 - (A) It exists as a dimer.
 - (B) Geometry around the iodine is tetrahedral in solid-state.
 - (C) It decomposes as ICl and Cl2 in gas-phase.
 - (D) Liquid ICl3 conducts electricity.
- Q.3 Among the following carbon allotropes, the one with discrete molecular structure is
 - (A) Diamond
- (B) α-Graphite
- (C) β-Graphite
- (D) Fullerene
- Q.4 The **INCORRECT** statement about the silicones is:
 - (A) They are thermally unstable because of the Si–C bond.
 - (B) They are insoluble in water.
 - (C) They are organosilicon polymers.
 - (D) They have stable silica-like skeleton (-Si-O-Si-O-Si-).
- Q.5 The Δ_o value of $[Ni(H_2O)_6]^{2+}$ is 8500 cm⁻¹. The Δ_o values for $[NiCl_6]^{4-}$ and $[Ni(NH_3)_6]^{2+}$ compared to $[Ni(H_2O)_6]^{2+}$ are
 - (A) higher and lower, respectively.
- (B) lower and higher, respectively.
- (C) higher in both complex ions.
- (D) lower in both complex ions.

- Q.6 In Freundlich isotherm, a linear relationship is obtained in the plot of
 - (θ = surface coverage and p = partial pressure of the gas)
 - (A) θ vs p.

(B) $\ln(\theta)$ vs $\ln(p)$.

(C) $\ln(\theta)$ vs p.

- (D) θ vs $\ln(p)$.
- Q.7 Micelle formation is accompanied by the
 - (A) decrease in overall entropy due to ordering.
 - (B) increase in overall entropy mostly due to increase in solvent entropy.
 - (C) increase in overall entropy mostly due to increase in solute entropy.
 - (D) increase in overall entropy and decrease in enthalpy
- Q.8 Consider the following phase diagram of CO₂ (not to scale). At equilibrium, the **INCORRECT** statement is:

- (A) At 200 K, on increasing the pressure from 1 to 50 atm, CO2 gas condenses to liquid.
- (B) It is not possible to obtain liquid CO₂ from gaseous CO₂ below 5.11 atm.
- (C) Both liquid and gas phase of CO_2 coexist at 298.15 K and 67 atm.
- (D) With increasing pressure, the melting point of solid ${\rm CO}_2$ increases.

Q.9 The major product formed in the following reaction is

Q.10 The Woodward-Hoffmann condition to bring out the following transformation is

(A) Δ , conrotatory

(B) Δ , disrotatory

(C) hv, disrotatory

D) hv, conrotatory

Q.11 The major product formed in the following reaction is

- (A)
- OH O
- (B) OH O
- (C) Ph O OH OH
- Cl₃C Ph O OH

Q.12 In the following reaction, the stereochemistry of the major product is predicted by the

(A) Cram's model

(B) Cram's chelation model

(C) Felkin model

(D) Felkin-Anh model

Q.13 The product(s) formed in the following reaction is (are)

Q.14 Among the following compounds, the number of compounds that **DO NOT** exhibit optical activity at room temperature is _____.

Q.15 The number of following diene(s) that undergo Diels-Alder reaction with methyl acrylate is

Q.16 The number of ¹H NMR signals observed for the following compound is .

Q.17 The number of CO stretching bands in IR spectrum of trigonal bipyramidal *cis*-M(CO)₃L₂ is ______.

(M = metal and L = monodentate ligand)

Q.18 On heating a sample of 25 mg hydrated compound (molecular weight = 250 g/mol) in thermogravimetric analysis, 16 mg of dehydrated compound remains. The number of water molecules lost per molecule of hydrated compound is ______.

(Molecular weight of water = 18 g/mol)

Q.19 The total number of α and β particles emitted in the following radioactive decay is _____.

$$^{238}_{92}\mathrm{U} \longrightarrow ^{210}_{82}\mathrm{Pb}$$

Q.20 An ideal gas occupies an unknown volume V liters (L) at a pressure of 12 atm. The gas is expanded isothermally against a constant external pressure of 2 atm so that its final volume becomes 3 L. The work involved for this expansion process is ______cal. (Round off to two decimal places)

(Gas constant R = 0.082 L atm mol⁻¹ $K^{-1} = 2$ cal mol⁻¹ K^{-1})

Q.21 The entropy change for the melting of 'x' moles of ice (heat of fusion is 80 cal g⁻¹) at 273 K and 1 atm pressure is 28.80 cal K⁻¹. The value of 'x' is _____. (Round off to two decimal places)

(Molecular weight of water =18 g/mol)

Q.22 Consider a two-state system at thermal equilibrium having energies 0 and 2k_BT for which the degeneracies are 1 and 2, respectively. The value of the partition function at the same absolute temperature T is ______. (Round off to two decimal places)

(k_B is the Boltzmann constant)

- Q.23 Consider a system of three identical and distinguishable non-interacting particles and three available nondegenerate single particle energy levels having energies 0, ϵ and 2ϵ . The system is in contact with a heat bath of temperature T K. A total energy of 2ϵ is shared by these three particles. The number of ways the particles can be distributed is _____.
- Q.24 In a 400 MHz ¹H NMR spectrometer, a proton resonates at 1560 Hz higher than that of tetramethylsilane. The chemical shift value of this proton is ______ ppm. (Round off to one decimal place)

(Chemical shift of tetramethylsilane is fixed at zero ppm)

Q.25 Gas phase bond length and dipole moment of a compound (MX) is 3 Å and 10.8 D, respectively. The ionic character in gas phase MX is _______%. (Round off to one decimal place)

 $(1D = 3.336 \times 10^{-30} \text{ C m})$

Q. 26 - Q. 55 carry two marks each.

Q.26	The	experimentally	observed	magnetic	moment	values,	which	match	well	with	the
	spin-	only values for t	he pair of	aqueous io	ns is						

(Atomic number: Cr = 24, Co = 27, Gd = 64, Tb = 65, Dy = 66 and Lu = 71)

(A) Cr(III) and Gd(III)

(B) Co(II) and Gd (III)

(C) Cr(III) and Dy(III)

- (D) Lu(III) and Tb(III)
- Q.27 Among the following compounds, a normal spinel is
 - (A) MgFe₂O₄

(B) ZnFe₂O₄

(C) CoFe₂O₄

- D) CuFe₂O₄
- Q.28 Following are the examples of silicate minerals

Zircon, ZrSiO₄

Beryl, Be3Al2Si6O1

Pyrophyllite, Al₂(OH)₂[(Si₂O₅)₂]

I

II

Ш

The correct structural description of the minerals is

- (A) I Ortho silicate, II Cyclic silicate and III Sheet silicate
- (B) **I** − Ortho silicate, **II** − Sheet silicate and **III** − Cyclic silicate
- (C) I Cyclic silicate II Sheet silicate and III Ortho silicate
- (D) I Sheet silicate, H Ortho silicate and HI Cyclic silicate
- Q.29 In the EPR spectrum of a methyl radical, the number of lines and their relative intensities, respectively, are
 - (A) 1 and 1
- (B) 3 and 1:2:1
- (C) 4 and 1:2:2:1
- (D) 4 and 1:3:3:1
- Q.30 The product obtained in the reaction of Mn₂(CO)₁₀ with Br₂ is
 - (A) Mn(CO)₅Br
- (B) $Mn_2(CO)_8Br_2$
- (C) $Mn(CO)_4Br_2$
- (D) Mn₂(CO)₉Br

Q.31 The correct molecular representation of W(Cp)₂(CO)₂ is

(Cp = cyclopentadienyl)

- (A) $[W(\eta^1 Cp)(\eta^3 Cp)(CO)_2]$
- (B) $[W(\eta^1-Cp)(\eta^5-Cp)(CO)_2]$
- (C) $[W(\eta^3-Cp)(\eta^5-Cp)(CO)_2]$
- (D) $[W(\eta^5-Cp)_2(CO)_2]$
- Q.32 Match the metalloproteins with their respective functions.

P	Ferritin	I	Electron transfer
Q	Rubredoxin	II	Acid-base catalysis
R	Cobalamin	III	Metal storage
S	Carbonic anhydrase	IV	Methyl transfer

- (A) P III; Q II; R I; S IV
- (B) P III; Q I; R IV; S II
- (C) P IV; Q I; R III; S II
- (D) P IV; Q II; R I; S III
- Q.33 Suppose the wave function of a one dimensional system is

$$\psi = \sin(kx) \exp(3ikx)$$

In an experiment measuring the momentum of the system, one of the expected outcomes is

- (A) 0
- (B) ħk
- (C) $2 \hbar k$
- (D) 3 ħk

Q.34 The major product formed in the following reaction is

(D)

(B)

(AIBN = azobisisobutyronitrile)

$$\begin{array}{c} \text{O} \\ \\ \\ \text{COOCH}_3 \end{array}$$

Q.35 The major product formed in the following reaction is

HOOC
$$COOCH_3$$
 $COOCH_3$ $COOCH_3$ $COOCH_3$

Q.36 The major product formed in the following reaction is

(A)
$$OOEt$$
 + HCHO OEt EtOH, A

Q.37 The major product formed in the following reaction is

(C)
$$CI$$
 CH_3

Q.38 In the following reaction sequence, the products \mathbf{P} and \mathbf{Q} are

(A)
$$P = \begin{array}{c} CN \\ Ts \end{array}$$

$$COCH_3$$
(B)
$$P = \begin{array}{c} CN \\ Ts \end{array}$$

$$COCH_3$$

$$COCH_3$$
(C)
$$CN \\ Ts \end{array}$$

$$COCH_3$$

$$COCH_3$$
(D)
$$CN \\ COCH_3$$

(D)
$$Q = \begin{pmatrix} CN & CH_3 \\ NH & Ts \end{pmatrix}$$

Q.39 The major product formed in the following reaction is

(PCC = pyridinium chlorochromate)

(A)
$$CH_3$$
 CH_3 $CH_$

Q.40 In the following reactions, the major products \mathbf{P} and \mathbf{Q} are

(A)

$$PhCO_3H$$
 $phCO_3H$
 $phcO$

Q.41 In the following reaction sequence, the products \mathbf{P} and \mathbf{Q} are

Q.42 The major product formed in the following reaction is

(B)

(D)

Q.43 The rate of the following redox reaction is slowest when X is

$$[\text{Co}^{\text{II}}(\text{NH}_3)_5\textbf{X}]^{3+/2+} \ + \ [\text{Cr}^{\text{II}}(\text{H}_2\text{O})_6]^{2+} \ \rightarrow \ [\text{Co}^{\text{II}}(\text{NH}_3)_5(\text{H}_2\text{O})]^{2+} \ + \ [\text{Cr}^{\text{III}}(\text{H}_2\text{O})_5\textbf{X}]^{3+/2+}$$

- (A) H₂O
- (B) NH₃
- (C) Cl
- (D) N_3^-

Q.44 A complex is composed of one chromium ion, three bromides and six water molecules. Upon addition of excess AgNO₃, 1.0 g aqueous solution of the complex gave 0.94 g of AgBr. The molecular formula of the complex is

(Atomic weight: Cr = 52, Br = 80, Ag = 108, O = 16 and H = 1)

(A) $[Cr(H_2O)_6]Br_3$

(B) $[Cr(H_2O)_5Br]Br_2 \bullet H_2O$

(C) $[Cr(H_2O)_4Br_2]Br•2H_2O$

(D) $[Cr(H_2O)_3Br_3] \cdot 3H_2O$

Q.45 The number of possible optically active isomer(s) for the following complex is

$$\begin{bmatrix}
O_2 \\
(en)_2 Co & \\
N \\
H_2
\end{bmatrix}$$
Co(en)₂

en = ethylenediamine

Q.46 The specific rotation of optically pure (R)-2-bromobutane is -112.00. A given sample of 2-bromobutane exhibited a specific rotation of -82.88. The percentage of (S)-(+)-enantiomer present in this sample is ______.

Q.47 Consider the following two parallel irreversible first order reactions at temperature T,

where k_1 and k_2 are the rate constants and their values are 5×10^{-2} and 15×10^{-2} min⁻¹, respectively, at temperature T. If the initial concentration of the reactant 'P' is 4 mol L⁻¹, then the concentration of product 'R' after 10 min of reaction is _____ mol L⁻¹. (Round off to two decimal places)

(Assume only P is present at the beginning of the reaction.)

Q.48 Consider the following equilibrium

$$SO_2(g) + \frac{1}{2}O_2 \hookrightarrow SO_3(g)$$

At 298 K, the standard molar Gibbs energies of formation, $\Delta_f G^0$, of SO₂ (g) and SO₃ (g) are -300 and -371 kJ mol⁻¹, respectively. The value of the equilibrium constant, K_P , at this temperature is _____ × 10¹⁰. (Round off to the nearest integer)

(Gas constant $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$)

Q.49 Consider the electrochemical cell

$$M(s)|MI_2(s)|MI_2(aq)|M(s)$$

where 'M' is a metal. At 298 K, the standard reduction potentials are

$$E_{\mathrm{M}^{2+}(\mathrm{aq})/\mathrm{M(s)}}^{0} = -0.12 \ \mathrm{V}, \quad E_{\mathrm{MI}_{2}(\mathrm{s})/\mathrm{M(s)}}^{0} = -0.36 \ \mathrm{V}$$
 and the temperature coefficient is $\left(\frac{\partial E_{\mathrm{cell}}^{0}}{\partial T}\right)_{\mathrm{p}} = 1.5 \times 10^{-4} \ \mathrm{V} \ \mathrm{K}^{-1}$. At this temperature the standard enthalpy change for the overall cell reaction, $\Delta_{\mathrm{r}} \mathrm{H}^{0}$, is _____kJ mol⁻¹. (Round off to two decimal places)

(Faraday constant $F = 96500 \text{ C mol}^{-1}$)

Q.50 The normal boiling point of a compound (X) is 350 K heat of vaporization, $\Delta_{\text{vap}}H$, = 30 kJ mol⁻¹). The pressure required to boil 'X' at 300 K is _____ Torr. (Round off to two decimal places)

(Ignore the temperature variation of $\Delta_{\text{vap}}H$; Gas constant $R=8.31~\text{J}~\text{mol}^{-1}~\text{K}^{-1}$ and 1~atm=760~Torr)

Q.51 For a bimolecular gas phase reaction $P+Q\to R$, the pre-exponential factor is $1\times 10^{13}~dm^3~mol^{-1}~s^{-1}$. The standard entropy of activation at 25 °C is ______ J K^{-1} mol^{-1}. (Round off to two decimal points)

(The standard concentration $c^o=1~\text{mol}~dm^{-3};$ Planck constant $h=6.62\times 10^{-34}~\text{J}~\text{s};$ Boltzmann constant $k_B=1.38\times 10^{-23}~\text{J}~\text{K}^{-1};$ Gas constant $R=8.31~\text{J}~\text{mol}^{-1}~\text{K}^{-1})$

Q.52 Character table of point group D₈ is given below.

D ₈	Е	2C ₈	2C ₄	$2C_8^3$	C_2	4C ₂ ′	4C ₂ "
A_1	a	1	1	1	1	1	1
A_2	b	1	1	1	1	h	i
B_1	С	-1	1	-1	1	1	j
\mathbf{B}_2	d	-1	1	-1	1	-1	1
E_1	e	$\sqrt{2}$	0	$-\sqrt{2}$	-2	0	0
E_2	f	0	-2	0	k	0	0
E_3	g	$-\sqrt{2}$	0	$\sqrt{2}$	-2	0	0

Value of (a+b+c+d+e+f+g+h+i+j+k) is equal to _____.

- Q.53 If $\langle \alpha | \hat{S}_x \hat{S}_y \hat{S}_y \hat{S}_x | \alpha \rangle = i\hbar^2 a$, where \hat{S}_x and \hat{S}_y are spin angular momentum operators and $|\alpha\rangle$ is spin up eigen function, then the value of 'a' is _____. (Round off to one decimal place)
- Q.54 A particle in one dimensional box of length 2a with potential energy

$$V = \begin{cases} 0 & |x| < a \\ \infty & |x| > a \end{cases}$$

is perturbed by the potential V' = cx eV, where c is a constant. The 1st order correction to the 1st excited state of the system is _____× c eV.

Q.55 Consider a two dimensional harmonic oscillator with angular frequency $\omega_x = 2\omega_y = 6.5 \times 10^{14} \text{ rad s}^{-1}$. The wavelength of x polarized light required for the excitation of a particle from its ground state to the next allowed excited state is _____ $\times 10^{-6}$ m. (Round off to one decimal place)

(Speed of light $c = 3.0 \times 10^8 \text{ m s}^{-1}$)

END OF THE QUESTION PAPER