GATE-2021-CY

Q. 1 - Q. 14 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: - 1/3).

Q. 1	The rates of alkaline hydrolysis of the compounds shown below
follow the order:	
(A)	$\mathbf{I}>\mathbf{I I}>\mathbf{I I I}$
(B)	$\mathbf{I I}>\mathbf{I}>\mathbf{I I I}$
(C)	$\mathbf{I I}>\mathbf{I I I}>\mathbf{I}$
(D)	$\mathbf{I I I}>\mathbf{I}>\mathbf{I I}$

Q. 2	The major product formed in the following reaction is:
(A)	
(B)	
(C)	
(D)	

Q. 4	The least acidic among the following compounds
	is:
(A)	\mathbf{M}
(B)	\mathbf{N}
(C)	\mathbf{O}
(D)	\mathbf{P}

Q. 7	An organic compound exhibits the $[\mathrm{M}]^{+},[\mathrm{M}+2]^{+}$and $[\mathrm{M}+4]^{+}$peaks in the intensity ratio 1:2:1 in the mass spectrum, and shows a singlet at $\delta 7.49$ in the ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum in CDCl_{3}. The compound is:
(A)	1,4-dichlorobenzene
(B)	1,4 -dibromobenzene
(C)	1,2-dibromobenzene
(D)	1,2 -dichlorobenzene

Q.8	Reaction of LiAlH_{4} with one equivalent of $\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{HCl}$ gives a tetrahedral compound, which reacts with anotherequivalent of $\mathbf{M e}{ }_{3} \mathrm{~N} \cdot \mathrm{HCl}$ to give compound N . The compound N and its geometry, respectively, are:
(A)	$\mathrm{LiAlH}_{4} \mathrm{NMe}_{3}$ and trigonal bipyramigat
(B)	$\mathrm{Li}_{2} \mathrm{AlH}_{4} \mathrm{Cl}$ and square pyramidat
(C)	$\mathrm{AlH}_{3}\left(\mathrm{NMe}_{3}\right)_{2}$ and trigenal bipyramidal
(D)	$\mathrm{AlH}_{3}\left(\mathrm{NMe}_{3}\right)_{2}$ and pentagonal

Q.9	Which one of the following is a non-heme protein?
(A)	hemoglobin
(B)	hemocyanin
(C)	myoglobin
(D)	cytochrome P-450

Q.10	A correct example of a nucleotide is:
(A)	adenosine monophosphate (AMP)
(B)	RNA
(C)	uridine
(D)	DNA

Q. 11	The equilibrium constant for the reaction $3 \mathrm{NO}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$ is closest to: $\left[\Delta G^{\circ}=-104.18 \mathrm{~kJ} ; R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right]$
(A)	1.043
(B)	1.8×10^{18}
(C)	1.651
(D)	5.7×10^{-19}

Q.12	The reaction of NiBr_{2} with two equivalents of PPh_{3} in CS_{2} at $-78{ }^{\circ} \mathrm{C}$ gives a red-colored diamagnetic complex, $\left[\mathrm{NiBr}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. This transforms to a green-colored paramagnetic complex with the same molecular formula at 25 ©. The geometry and the number of unpaired electrons in the green-colored complex, respectively, are:
(A)	tetrahedral and 1
(B)	tetrahedral and 2
(C)	square planar and 2
(D)	square planar and 4

Q. 13	The rate of the substitution reaction of $\left[\mathrm{Co}(\mathrm{CN})_{5} \mathrm{Cl}\right]^{3-}$ with OH^{-}to give $\left[\mathrm{Co}(\mathrm{CN})_{5}(\mathrm{OH})\right]^{3-}$
(A)	depends on the concentrations of both $\left[\mathrm{Co}(\mathrm{CN})_{5} \mathrm{Cl}\right]^{3-}$ and OH^{-}
(B)	depends on the concentration of $\left[\mathrm{Co}(\mathrm{CN})_{5} \mathrm{Cl}\right]^{3-}$ only
(C)	is directly proportional to the concentration of OH^{-}only
(D)	is inversely proportional to the concentration of OH^{-}
Q. 14	The Δ_{o} of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{CrF}_{6}\right]^{3-}$ and $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$ follows the order:
(A)	$\left.\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{CrF}_{6}\right]^{3-}>\operatorname{Cr}(\mathrm{CN})_{6}\right]^{3-}$
(B)	$\left[\mathrm{CrF}_{6}\right]^{3-}>\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right]^{3+}\right]^{+}\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$
(C)	$\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{CrF}_{6}\right]^{3-}$
(D)	$\left[\mathrm{CrF}_{6}\right]^{3-}>\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Q. 15 - Q. 18 Multiple Select Question (MSQ), carry ONE mark each (no negative marks).

Q.16	Acceptable wavefunctions for a quantum particle must be:
(A)	odd
(B)	even
(C)	single-valued
(D)	continuous

Q. 17	The characters of $\boldsymbol{E}, C_{2}, \sigma_{v}$, and σ_{v} symmetry operations, ì this order, for valid irreducible representation(s) of the $C_{2 v}$ point group is/are:
(A)	$1,1,1,1$
(B)	$-1,1,1,-1$
(C)	$1,-1,1,-1$
(D)	$1,-1,-1,-1$

Q. 18 The normal mode(s) of vibration of $\mathrm{H}_{2} \mathrm{O}$ is/are:
Q. 19 - Q. 25 Numerical Answer Type (NAT), carry ONE mark each (no negative marks).

Q. 19	A reversible heat engine absorbs 20 kJ of heat from a source at 500 K and dissipates it to the reservoir at 400 K. The efficiency of the heat engine is $\%$.

Q. 20	Among the following eight compounds, the number of compound(s) whicb can exhibit stereoisomerism is . \qquad
Q. 21	The Mo-Mo bond order in $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\right]_{2}$ which obeys the 18 electron rule is \qquad .
Q. 22	The change in enthalpy (ΔH) for the reaction $2 \mathrm{P}(\mathrm{~s})+3 \mathrm{Br}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{PBr}_{3}(\mathrm{l})$ is -243 kJ . In this reaction, if the amount of phosphorus consumed is 3.1 g , the change in enthalpy (rounded off to two decimal places) is \qquad kJ. [Atomic Wt. of $\mathbf{P}=31]$

Q. 23	The number of signal(s) in the ${ }^{1} \mathrm{H}$ NMR spectrum of the following compound
recorded at $25^{\circ} \mathrm{C}$ in CDCl_{3} is	

Q. 26 - Q. 42 Multiple Choice Question (MCQ), carry TWO mark each (for each wrong answer: - 2/3).

Q. 26	The geometry and the number of unpaired electrons in tetrakis(1- norbornyl)Co
	respectively, are:
(A)	tetrahedral and one
(B)	tetrahedral and five
(C)	square planar and one
(D)	square planar and three

Q. 27	The yellow color of an aqueous solution of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ changes to red-orange upon the addition of a few drops of HCl. The red-orange complex, the oxidation state of its central element(s), and the origin of its color, respectively, are:
(A)	chromium chloride, +3 , d-d transition
(B)	dichromate ion, +6 and +6, eharge transfer
(C)	perchlorate ion, +7 charge transfer
(D)	chromic acid, +6, charge transfer

Q.28	The shapes of the compounds ClF3, XeOF2, $\mathrm{N}_{3}{ }^{-}$and $\mathrm{XeO}_{3} \mathrm{~F}_{2}$ respectively, are:
(A)	T-shape, T-shape, linear and trigonal bipyramidal
(B)	trigonal planar, T-shape, V-shape and square pyramidal
(C)	T-shape, trigonal planar, linear and square pyramidal
(D)	trigonal planar, trigonal planar, V-shape and trigonal bipyramidal

Q.29	The metal borides that contain isolated boron atoms are:
(A)	$\mathrm{Tc}_{7} \mathrm{~B}_{3}$ and $\mathrm{Re}_{7} \mathrm{~B}_{3}$
(B)	$\mathrm{Cr}_{5} \mathrm{~B}_{3}$ and $\mathrm{V}_{3} \mathrm{~B}_{2}$
(C)	$\mathrm{Ti}_{4} \mathrm{~B}_{4}$ and $\mathrm{V}_{3} \mathrm{~B}_{4}$
(D)	TiB and HfB

Q. 34	In an electrochemical cell, Ag^{+}ions in AgNO_{3} are reduced to Ag metal at the cathode and Cu is oxidized to Cu^{2+} at the anode. A current of 0.7 A is passed through the cell for 10 min . The mass (in grams) of silver deposited and copper dissolved, respectively, are: [Faraday Constant $=96,485 \mathrm{C} \mathrm{mol}^{-1}$, Atomic Weight of $\mathrm{Ag}=107.9$, Atomic Weight of $\mathrm{Cu}=63.55$]
(A)	0.469 and 0.138
(B)	0.235 and 0.138
(C)	0.469 and 0.069
(D)	0.235 and 0.069
Q. 35	Among the following I II III IV V VI the compounds which can be prepared by nucleophilic substitution reaction are:
(A)	III, IV, and V
(B)	$\mathbf{I}, \mathbf{I I} \text {, and VI }$
(C)	II, IV, and VI
(D)	I, III, and V

Q.38	The major product formed in the reaction of (2R,3R)-2-bromo-3-methylpentane with NaOMe is:
(A)	(Z)-3-methylpent-2-ene
(B)	$($ (E)-3-methylpent-2-ene
(C)	$(2 R, 3 R)$-2-methoxy-3-methylpentane
(D)	$(2 S, 3 R)$-2-methoxy-3-methylpentane

Q. 39	The major product formed in the following reaction (i) LDA (1.1 equiv) (ii) $\mathrm{PhCH}_{2} \mathrm{Br}$ (1.1 equiv) (iii) LiAlH_{4} (3 equiv) is:
(A)	
(B)	
(C)	
(D)	
Q. 40	Hexane and heptane are completely miscible. At $25^{\circ} \mathrm{C}$, the vapor pressures of hexane and heptane are 0.198 atm and 0.06 atm , respectively. The mole fractions of hexane and heptane in the vapor phase for a solution containing 4 M hexane and $\mathbf{~} M$ heptane, respectively, are:
(A)	0.688 and 0.312
(B)	0.400 and 0.600
(C)	0.312 and 0.688
(D)	0.600 and 0.400

Q.41	The correct order of Lewis acid strengths of $\mathbf{B F}_{2} \mathbf{C l}, \mathbf{B F C l B r}, \mathbf{B F}_{2} \mathbf{B r}$ and $\mathbf{B F B r}_{\mathbf{2}}$ is:
(A)	$\mathrm{BF}_{2} \mathrm{Cl}>\mathrm{BFClBr}>\mathrm{BF}_{2} \mathrm{Br}>\mathrm{BFBr}_{2}$
(B)	$\mathrm{BFBr}_{2}>\mathrm{BFClBr}>\mathrm{BF}_{2} \mathrm{Br}>\mathrm{BF}_{2} \mathrm{Cl}$
(C)	$\mathrm{BF}_{2} \mathrm{Cl}>\mathrm{BF}_{2} \mathrm{Br}>\mathrm{BFClBr}^{2} \mathrm{BFBr}_{2}$
(D)	$\mathrm{BFClBr}>\mathrm{BFBr}_{2}>\mathrm{BF}_{2} \mathrm{Cl}>\mathrm{BF}_{2} \mathrm{Br}$

Q. 42	The correct order of increasing intensity (molar absorptivity) of the UV-visible absorption bands for the ions $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},[\mathrm{CrO} 4]^{2-}$, and $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is:
(A)	$\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}<\left[\mathrm{CrO}_{4}\right]^{2-}<\left[\mathrm{NiCl}_{4}\right]^{2}$
(B)	$\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}<\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{NiCl}_{4}\right]^{2-}<\left[\mathrm{CrO}_{4}\right]^{2-}$
(C)	$\left[\mathrm{NiCl}_{4}\right]^{2-}<\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)_{6}^{2+}<\left[\mathrm{CrO}_{4}\right]^{2-}\right.$
(D)	$\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{NiCl}_{4}\right]^{2-}<\left[\mathrm{CrO}_{4}\right]^{2+}<\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Q. 43 - Q. 44 Multiple Select Question (MSQ), carry TWO mark each (no negative marks).

Q.43	The correct statement(s) about the concentration of $\mathbf{N a}^{+}$and \mathbf{K}^{+}ions in animal cells is/are:
(A)	$\left[\mathrm{K}^{+}\right]$inside the cell $>\left[\mathrm{K}^{+}\right]$outside the cell
(B)	$\left[\mathrm{Na}^{+}\right]$inside the cell $>\left[\mathrm{Na}^{+}\right]$outside the cell
(C)	$\left[\mathrm{Na}^{+}\right]$inside the cell $<\left[\mathrm{Na}^{+}\right]$outside the cell
(D)	$\left[\mathrm{K}^{+}\right]$inside the cell $<\left[\mathrm{K}^{+}\right]$outside the cell

Q.44	The correct statement(s) about actinides is/are;
(A)	The 5f electrons of actinides are bound lesstightly than the 4f electrons.
(B)	The trans uranium elements are prepared artificially.
(C)	All the actinides are radioactive.
(D)	Actinides do not exhibit actinide contraction.

Q. 45 - Q. 55 Numerical Answer Type (NAT), carry TWO mark each (no negative marks).
Q. 45 The number of photons emitted per nanosecond by a deuterium lamp ($\mathbf{4 0 0} \mathbf{n m}$) having a power of 1 microwatt (rounded off to the nearest integer) is \qquad .
$\left[h=6.626 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1} ; c=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right.$]
Q. 46 Given the initial weight of 1 mg of radioactive ${ }_{27}^{60} \mathrm{Co}$ (half-ife $=5.27$ years), the amount disintegrated in 1 year (rounded off to two decimal places) is _ mg.
Q. 47 The de Broglie wavelength of an argon atom (mass $=40 \mathrm{amu}$) traveling at a speed of $250 \mathrm{~m} \mathrm{~s}^{-1}$ (rounded off to one decimal place) is \qquad picometers. $\left[N=6.022 \times 10^{23} ; h=6.626 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right]$
Q. 48 The molar absorption coefficient of a substance dissolved in cyclohexane is $1710 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$ af 500 nm . The reduction in intensity of light of the same wavelength that passes through a cell of 1 mm path length containing a 2 mmol L^{-1} solution (rounded off to one decimal place) is \qquad \%.
Q. 49 The fundamental vibrational frequency of ${ }^{1} \mathbf{H}^{127} \mathbf{I}$ is $2309 \mathbf{~ c m}^{-1}$. The force constant for this molecule (rounded off to the nearest integer) is \qquad $\mathrm{N}_{\mathbf{m}}{ }^{-1}$.
$\left[N=6.022 \times 10^{23}, c=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right]$
Q. 50 A laser Raman spectrometer operating at 532 nm is used to record the vibrational spectrum of Cl_{2} having its fundamental vibration at $560 \mathrm{~cm}^{-1}$. The Stokes line corresponding to this vibration will be observed at \qquad cm^{-1}. (Rounded off to the nearest integer)

Q. 51	The vapor pressure of toluene (Mol. Wt. $=92$) is 0.13 atm at $25^{\circ} \mathrm{C}$. If 6 g of a hydrocarbon is dissolved in 92 g of toluene, the vapor pressure drops to 0.12 atm. The molar mass of the hydrocarbon (rounded off to the nearest integer) is

Q. 52	The reaction
$\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g})$	
at $500{ }^{\circ} \mathrm{C}$, with initial pressures of 0.7 bar of CO and 1.0 bar of Cl ${ }^{\circ}$, is allowed	
to reach equilibrium. The partial pressure of $\mathrm{COCl}_{2}(\mathrm{~g})$ at equilibrium is 0.15	
bar. The equilibrium constant for this reaction at $500{ }^{\circ} \mathrm{C}$ (rounded off to two	
decimal places) is	

Q. 53	The rate constants for the decomposition of a molecule in the presence of oxygen are $0.237 \times 10^{-4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at $0^{\circ} \mathrm{C}$ and $2.64 \times 10^{-4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at $25{ }^{\circ} \mathrm{C}$ $\left(R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ The activation energy for this reaction (rounded off to one decimal place) is \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$.
Q. 54	2 L of a gas at 1 atmpressure is reversibly heated to reach a final volume of 3.5 L. The absolute value of the work done on the gas (rounded off to the nearest integer) is \qquad Joules.
Q. 55	The quantity of the cobalt ore $\left[\mathrm{Co}_{3}\left(\mathrm{AsO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]$ required to obtain 1 kg of cobalt (rounded off to two decimal places) is \qquad kg. [Atomic Wt. of Co = 59, As = 75, O = 16, $\mathrm{H}=1$]

