GATE-2021-CY

Q.1 – Q.14 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: – 1/3).

Q.1	The rates of alkaline hydrolysis of the compounds shown below
	t-Bu t-Bu t-Bu t-Bu t-Bu t-Bu t-Bu t-Bu
	I II PU
	follow the order:
(A)	I > II > III
(B)	III > I > IIII
(C)	II < III < II
(D)	III < I < III
	C,

Q.2	The major product formed in the following reaction
	Me CH ₂ I ₂ , Zn/Cu Me SiMe ₂ Ph Et ₂ O
	is:
(A)	Me Me SiMe ₂ Ph
(B)	Me SiMe ₂ Ph
(C)	Me Me SiMe ₂ Ph
(D)	Me SiMe ₂ Ph

Q.7	An organic compound exhibits the $[M]^+$, $[M+2]^+$ and $[M+4]^+$ peaks in the intensity ratio 1:2:1 in the mass spectrum, and shows a singlet at δ 7.49 in the ¹ H NMR spectrum in CDCl ₃ . The compound is:
(A)	1,4-dichlorobenzene
(B)	1,4-dibromobenzene
(C)	1,2-dibromobenzene
(D)	1,2-dichlorobenzene

(D)	1,2-uiciii0i00eii2eiie
Q.8	Reaction of LiAlH ₄ with one equivalent of Me ₃ N·HCl gives a tetrahedral compound, which reacts with another equivalent of Me ₃ N·HCl to give compound N. The compound N and its geometry, respectively, are:
	compound it. The compound it and its geometry, respectively, are.
(A)	LiAlH ₄ NMe ₃ and trigonal bipyramidal
(B)	Li ₂ AlH ₄ Cl and square pyramidal
(C)	AlH ₃ (NMe ₃) ₂ and trigonal bipyramidal
(D)	AlH ₃ (NMe ₃) ₂ and pentagonal
	Who

Q.9	Which one of the following is a non-heme protein?	
(A)	hemoglobin	
(B)	hemocyanin	
(C)	myoglobin	
(D)	cytochrome P-450	

Q.10	A correct example of a nucleotide is:
(A)	adenosine monophosphate (AMP)
(B)	RNA
(C)	uridine
(D)	DNA

Q.11	The equilibrium constant for the reaction $3 \text{ NO } (g) \rightleftharpoons \text{N}_2 \text{O} (g) + \text{NO}_2 (g)$ at 25 °C is closest to: $ AC^2 = -104.18 \text{ kJ}_2 R = 8.214 \text{ J}_2 \text{ mol}^{-1} \text{ J}_2 \text{ J}_2$
	$[\Delta G^{\circ} = -104.18 \text{ kJ}; R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}]$
(A)	1.043
(B)	$1.8 imes 10^{18}$
(C)	1.651
(D)	5.7×10^{-19}

Q.12	The reaction of NiBr ₂ with two equivalents of PPh ₃ in CS ₂ at -78 °C gives a red-colored diamagnetic complex, $[NiBr_2(PPh_3)_2]$. This transforms to a green-colored paramagnetic complex with the same molecular formula at 25 °C. The geometry and the number of unpaired electrons in the green-colored complex, respectively, are:
(A)	tetrahedral and 1
(B)	tetrahedral and 2
(C)	square planar and 2
(D)	square planar and 4

Q.13	The rate of the substitution reaction of $[Co(CN)_5Cl]^{3-}$ with OH ⁻ to give $[Co(CN)_5(OH)]^{3-}$
(A)	depends on the concentrations of both $[Co(CN)_5Cl]^{3-}$ and OH^-
(B)	depends on the concentration of $[Co(CN)_5Cl]^{3-}$ only
(C)	is directly proportional to the concentration of OH ⁻ only
(D)	is inversely proportional to the concentration of OH-
	R

Q.14	The Δ_0 of $[Cr(H_2O)_6]^{3+}$, $[CrF_6]^{3-}$ and $[Cr(CN)_6]^{3-}$ follows the order:
(A)	$[Cr(H_2O)_6]^{3+} > [CrF_6]^{3-} > [Cr(CN)_6]^{3-}$
(B)	$[CrF_6]^{3-} > [Cr(H_2O_6)^3] > [Cr(CN_6)^{3-}]^{3-}$
(C)	$[Cr(CN)_6]^{3-} > [Cr(H_2O)_6]^{3+} > [CrF_6]^{3-}$
(D)	$[CrF_6]^{3-} > [Cr(CN)_6]^{3-} > [Cr(H_2O)_6]^{3+}$
	O_{J}

Q.15 – Q.18 Multiple Select Question (MSQ), carry ONE mark each (no negative marks).

Q.16	Acceptable wavefunctions for a quantum particle must be:
(A)	odd
(B)	even
(C)	single-valued
(D)	continuous

Q. 17	The characters of <i>E</i> , <i>C</i> ₂ , σ_{ν} , and σ'_{ν} symmetry operations, in this order, for valid irreducible representation(s) of the <i>C</i> _{2ν} point group is/are:
(A)	1, 1, 1, 1
(B)	-1, 1, 1, -1
(C)	1, -1, 1, -1
(D)	1, -1, -1, -1
	, CI

Q. 18	The normal mode(s) of vibration of H ₂ O is/are:
(A)	H O CH
(B)	Н
(C)	H O H
(D)	

Q.19 – Q.25 Numerical Answer Type (NAT), carry ONE mark each (no negative marks).

0, 19	A reversible heat engine absorbs 20 kJ of heat from a source at 500 K and
Q. 17	dissipates it to the reservoir at 400 K. The efficiency of the heat engine is
	%.

Q. 23	The number of signal(s) in the ¹ H NMR spectrum of the following compound
	recorded at 25 °C in CDCl ₃ is

Q. 24	A 5 V battery delivers a steady current of 1.5 A for a period of 2 h. The total
	charge that has passed through the circuit is Coulombs.

Q. 25	The spin-only magnetic moment of [Co(H2O) ₆] ²⁺ (rounded off to one decimal place) is BM.
	chet
	amic
	DYNia

Q.26 - Q.42 Multiple Choice Question (MCQ), carry TWO mark each (for each wrong answer: -2/3).

Q.26	The geometry and the number of unpaired electrons in tetrakis(1- norbornyl)Co
	Co 4
	respectively, are:
(A)	tetrahedral and one
(B)	tetrahedral and five
(C)	square planar and one
(D)	square planar and three
	.5

The yellow color of an aqueous solution of K ₂ CrO ₄ changes to red-orange upon the addition of a few drops of HCl. The red-orange complex, the oxidation state of its central element(s), and the origin of its color, respectively, are:
chromium chloride, +3, d-d transition
dichromate ion, +6 and +6, charge transfer
perchlorate ion, +7, charge transfer
chromic acid, +6, charge transfer
$-\mathcal{O}_{\mathcal{I}}$

Q.28	The shapes of the compounds
	ClF3, XeOF2, N3 ⁻ and XeO3F2
	respectively, are:
(A)	T-shape, T-shape, linear and trigonal bipyramidal
(B)	trigonal planar, T-shape, V-shape and square pyramidal
(C)	T-shape, trigonal planar, linear and square pyramidal
(D)	trigonal planar, trigonal planar, V-shape and trigonal bipyramidal

Q.29	The metal borides that contain isolated boron atoms are:
(A)	Tc ₇ B ₃ and Re ₇ B ₃
(B)	Cr ₅ B ₃ and V ₃ B ₂
(C)	Ti ₄ B ₄ and V ₃ B ₄
(D)	TiB and HfB

Q.34	In an electrochemical cell, Ag ⁺ ions in AgNO ₃ are reduced to Ag metal at the cathode and Cu is oxidized to Cu ²⁺ at the anode. A current of 0.7 A is passed through the cell for 10 min. The mass (in grams) of silver deposited and copper dissolved, respectively, are: [Faraday Constant = 96,485 C mol ⁻¹ , Atomic Weight of Ag = 107.9, Atomic Weight of Cu = 63.55]
(A)	0.469 and 0.138
(B)	0.235 and 0.138
(C)	0.469 and 0.069
(D)	0.235 and 0.069

Q.38	The major product formed in the reaction of $(2R,3R)$ -2-bromo-3-methylpentane with NaOMe is:
(A)	(Z)-3-methylpent-2-ene
(B)	(<i>E</i>)-3-methylpent-2-ene
(C)	(2 <i>R</i> ,3 <i>R</i>)-2-methoxy-3-methylpentane
(D)	(2 <i>S</i> ,3 <i>R</i>)-2-methoxy-3-methylpentane

Q.41	The correct order of Lewis acid strengths of BF ₂ Cl, BFClBr, BF ₂ Br and BFBr ₂ is:
(A)	$BF_2Cl > BFClBr > BF_2Br > BFBr_2$
(B)	$BFBr_2 > BFClBr > BF_2Br > BF_2Cl$
(C)	$BF_2Cl > BF_2Br > BFClBr > BFBr_2$
(D)	$BFClBr > BFBr_2 > BF_2Cl > BF_2Br$

Q.42	The correct order of increasing intensity (molar absorptivity) of the UV-visible absorption bands for the ions $[Ti(H_2O)_6]^{3+}$, $[Mn(H_2O)_6]^{2+}$, $[CrO_4]^{2-}$, and $[NiCl_4]^{2-}$ is:
(A)	$[Ti(H_2O)_6]^{3+} < [Mn(H_2O)_6]^{2+} < [CrO_4]^{2-} < [NiCl_4]^{2-}$
(B)	$[Mn(H_2O)_6]^{2+} < [Ti(H_2O)_6]^{3+} < [NiCl_4]^{2-} < [CrO_4]^{2-}$
(C)	$[NiCl_4]^{2-} < [Ti(H_2O)_6]^{3+} < [Mn(H_2O)_6]^{2+} < [CrO_4]^{2-}$
(D)	$[Ti(H_2O)_6]^{3+} < [NiCl_4]^{2-} < [CrO_4]^2 < [Mn(H_2O)_6]^{2+}$

Q.43 – Q.44 Multiple Select Question (MSQ), carry TWO mark each (no negative marks).

Q.43	The correct statement(s) about the concentration of Na ⁺ and K ⁺ ions in animal cells is/are:
(A)	$[K^+]$ inside the cell > $[K^+]$ outside the cell
(B)	$[Na^+]$ inside the cell > $[Na^+]$ outside the cell
(C)	$[Na^+]$ inside the cell < $[Na^+]$ outside the cell
(D)	$[K^+]$ inside the cell < $[K^+]$ outside the cell
	Por.

Q.44	The correct statement(s) about actinides is/are:
(A)	The 5f electrons of actinides are bound less tightly than the 4f electrons.
(B)	The trans uranium elements are prepared artificially.
(C)	All the actinides are radioactive.
(D)	Actinides do not exhibit actinide contraction.
	Dynamic

28A,1st Floor

Q.45 – Q.55 Numerical Answer Type (NAT), carry TWO mark each (no negative marks).

- Q.45 The number of photons emitted per nanosecond by a deuterium lamp (400 nm) having a power of 1 microwatt (rounded off to the nearest integer) is _____. $[h = 6.626 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}; c = 3.0 \times 10^8 \text{ m s}^{-1}]$
- Q.46 Given the initial weight of 1 mg of radioactive ⁶⁰₂₇Co (half-life = 5.27 years), the amount disintegrated in 1 year (rounded off to two decimal places) is ____mg.
- Q.47 The de Broglie wavelength of an argon atom (mass = 40 amu) traveling at a speed of 250 m s⁻¹ (rounded off to one decimal place) is _____ picometers. $[N = 6.022 \times 10^{23}; h = 6.626 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}]$
- Q.48The molar absorption coefficient of a substance dissolved in cyclohexane is
1710 L mol⁻¹ cm⁻¹ at 500 nm. The reduction in intensity of light of the same
wavelength that passes through a cell of 1 mm path length containing a 2 mmol
L⁻¹ solution (rounded off to one decimal place) is _____%.
- Q.49 The fundamental vibrational frequency of ${}^{1}\text{H}{}^{127}\text{I}$ is 2309 cm⁻¹. The force constant for this molecule (rounded off to the nearest integer) is _____N m⁻¹. [$N = 6.022 \times 10^{23}, c = 3.0 \times 10^{8} \text{ m s}{}^{-1}$]
- Q.50 A laser Raman spectrometer operating at 532 nm is used to record the vibrational spectrum of Cl₂ having its fundamental vibration at 560 cm⁻¹. The Stokes line corresponding to this vibration will be observed at _____ cm⁻¹. (Rounded off to the nearest integer)

Q.51 The vapor pressure of toluene (Mol. Wt. = 92) is 0.13 atm at 25 °C. If 6 g of a hydrocarbon is dissolved in 92 g of toluene, the vapor pressure drops to 0.12 atm. The molar mass of the hydrocarbon (rounded off to the nearest integer) is

Q.52	The reaction
	$CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$
	at 500 °C, with initial pressures of 0.7 bar of CO and 1.0 bar of Cl ₂ , is allowed to reach equilibrium. The partial pressure of COCl ₂ (g) at equilibrium is 0.15 bar. The equilibrium constant for this reaction at 500 °C (rounded off to two decimal places) is

- Q.53 The rate constants for the decomposition of a molecule in the presence of oxygen are 0.237×10^{-4} L mol⁻¹s⁻¹ at 0 °C and 2.64×10^{-4} L mol⁻¹s⁻¹ at 25 °C (R = 8.314 J mol⁻¹ K⁻¹). The activation energy for this reaction (rounded off to one decimal place) is ______kJ mol⁻¹.
- Q.54 2 L of a gas at 1 atm pressure is reversibly heated to reach a final volume of 3.5 L. The absolute value of the work done on the gas (rounded off to the nearest integer) is ______ Joules.

1

Q.55The quantity of the cobalt ore [Co3(AsO4)2·H2O] required to obtain 1 kg of
cobalt (rounded off to two decimal places) is ______ kg.[Atomic Wt. of Co = 59, As = 75, O = 16, H = 1]